
Characterizing and Testing Principal Minor Equivalence of

Matrices

Abhranil Chatterjee
*1

, Sumanta Ghosh
†2

, Rohit Gurjar
‡3

, and Roshan Raj
§3

1
Indian Statistical Institute, Kolkata

2
Chennai Mathematical Institute

3
Indian Institute of Technology Bombay

September 13, 2024

Abstract

Two matrices are said to be principal minor equivalent if they have equal corresponding

principal minors of all orders. We give a characterization of principal minor equivalence

and a deterministic polynomial time algorithm to check if two given matrices are principal

minor equivalent. Earlier such results were known for certain special cases like symmetric

matrices, skew-symmetric matrices with 0, 1, -1-entries, and matrices with no cuts (i.e., for

any non-trivial partition of the indices, the top right block or the bottom left block must

have rank more than 1).

As an immediate application, we get an algorithm to check if the determinantal point

processes corresponding to two given kernel matrices (not necessarily symmetric) are the

same. As another application, we give a deterministic polynomial-time test to check equality

of two multivariate polynomials, each computed by a symbolic determinant with a rank 1

constraint on coefficient matrices.

1 Introduction

The determinant of a matrix is a fundamental object of study in mathematics that has found

numerous applications throughout computer science, physics, and other fields. A minor of

a matrix is the determinant of one of its square submatrices and its order is the size of the

corresponding submatrix. A principal minor of a matrix is a minor obtained by deleting the

same set of rows and columns. Principal minors play an important role in a variety of ap-

plications, for example, convexity of functions and positive semidefinite matrices [BV04], the

linear complementarity problem and P-matrices [Mur72], counting number of forests via the

Laplacian matrix [BS11], and inverse eigenvalue problems [Fri77].

In this paper, we investigate a basic question about principal minors – what is the relation-

ship between two matrices which have equal corresponding principal minors of all orders (i.e.,

two matrices A and B such that for all S ⊆ {1, 2, . . . , n}, det(A[S, S]) = det(B[S, S])). We call

two such matrices to be principal minor equivalent (PME). Observe that two matrices are PME if

and only if all their corresponding principal submatrices have the same set of eigenvalues. We

seek answers of the following two questions.

*abhneil@gmail.com
†besusumanta@gmail.com
‡rgurjar@cse.iitb.ac.in, supported by SERB MATRICS grant

§roshanraj@cse.iitb.ac.in

1

Question 1 (characterization). Can we identify a property P such that two matrices are PME

if and only if they satisfy P?

Question 2 (efficient algorithm). Can we efficiently check whether two matrices are PME or

not?

The question of characterizing the relationship between two PME matrices has been exten-

sively studied [ES80, Loe86, Ahm23, BCCL21, BC16]. One motivation for studying this question

comes from the problem of learning determinantal point processes [KT12, UBMR17, Bru18]

and the closely related principal minor assignment problem [GT06, RKT15, BU24]. While our

original motivation to study this question came from an application to the polynomial identity

testing problem (see Section 1.1).

To move towards characterizing PME matrices, let us first consider some trivial operations

which preserve all the principal minors. Two matrices A and B are called diagonally similar if

there exists an invertible diagonal matrix D such that A = DBD−1
. We call two matrices A

and B diagonally equivalent if A is diagonally similar to B or BT
. It is easy to verify that any

two diagonally equivalent matrices are PME. Interestingly, Engel and Schneider [ES80] showed

that the converse is also true when one of the matrices is symmetric. That is, principal minor

equivalence of a symmetric matrix with another matrix implies their diagonal equivalence (in

fact, diagonal similarity). As one can efficiently check whether two matrices are diagonally

equivalent or not, it also yields an efficient algorithm to decide principal minor equivalence in

this case.

In general, principal minor equivalence does not imply diagonal equivalence, as demon-

strated by the following example. Consider the following block diagonal matrix A and a block

upper triangular matrix B:

A =

(
A1 0
0 A2

)
, B =

(
A1 A3
0 A2

)
. (1)

It is easy to see that A and B are principal minor equivalent oblivious to the entries of A3, but

they are not diagonally equivalent. Such matrices that can be written as a block upper triangular

matrix by permuting some rows and corresponding columns are called reducible matrices (and

irreducible otherwise). For any n × n matrix A, define a graph with the vertex set [n] and

allow an edge (i, j) if and only if the (i, j)-th entry of A is nonzero. We can equivalently define

reducible matrices as the ones whose graph has more than one strongly connected components.

One can show that two matrices are PME if and only if they have the same set of irreducible

blocks and their corresponding irreducible blocks are PME (see, for example, [Ahm23, Section

5]). Hence, we can restrict our focus to irreducible matrices.

In a series of works, Hartfiel and Loewy [HL84], and Loewy [Loe86] extended the result of

Engel and Schneider [ES80] to general irreducible matrices with no cuts. An n× n matrix A is

said to have a cut X ⊆ [n], if 2 ≤ |X| ≤ n− 2 and both the submatrices A[X, X] and A[X, X]
have rank one (the submatrices cannot have rank zero if A is irreducible). They showed that

for any irreducible matrix A with no cuts and any matrix B, if A and B are PME, then A and

B are also diagonally equivalent. So, the case which remained unclear was that of irreducible

matrices with cuts. Engel and Schneider [ES80, Example 3.7] had given an example of two 4× 4
matrices which are PME, but not diagonally equivalent. Clearly, both these matrices must have

a cut.

The cut-transpose operation. Recently, Ahmadieh[Ahm23, Lemma 4.5] gave a general recipe

that for any irreducible matrix A with a cut, finds another matrix B that is PME to A, but not

necessarily diagonally equivalent to A. For this they define an operation on matrices with a

cut, which we refer as cut-transpose. Consider a matrix A and let X be a cut of A. From the

2

definition of a cut, A must be of the following form:

A =

(
M pqT

uvT N

)
,

where the submatrix A(X, X) = M and A(X, X) = N and p, q, u, v are column vectors of

appropriate dimensions. Define a cut-transpose operation on A with respect to cut X, which

transforms A to a new matrix ct(A, X) as follows:

ct(A, X) =

(
M puT

qvT NT

)
.

Ahmadieh [Ahm23] showed that cut-transpose is a principal minor preserving operation. A

natural conjecture would be that any two irreducible PME matrices are related by a sequence of

cut-transpose operations. To elaborate, let us define any two matrices A and B as cut-transpose

equivalent if there is a sequence A = A0, A1, . . . , Ak of matrices such that for each 0 ≤ i ≤ k− 1,

Ai+1 = ct(Ai, Xi) for some cut Xi of Ai, and Ak is diagonally equivalent to B. Can one show

that two irreducible matrices are PME if and only if they are cut-transpose equivalent?

Interestingly, Boussaïri and Chergui [BC16] had shown precisely this for a special case,

when the two matrices are skew-symmetric with entries from {−1, 0, 1} and all their off-

diagonal entries in the first row are nonzero. Moreover, they conjectured that it should be true

for arbitrary skew-symmetric matrices. In a follow up work, Boussaïri, Chaïchaâ, Chergui,

and Lakhlifi [BCCL21] proved the same for another special case called generalized tournament

matrices (non-negative matrices A with A + AT = Jn − In, where Jn is all ones matrix). The

cut-transpose operation in their settings is called as HL-clan-reversal or clan-inversion. Both

these work build on a combinatorial result [BILT04] about directed graphs with a similar flavor.

The combinatorial result, in turn, is a generalization of Gallai’s theorem [Gal67] which states

that if two partially ordered sets have the same comparability graph, then they are related by

a sequence of orientation reversal operations (see [BILT04, M8̈5]). This orientation reversal on

a poset is a special instance of cut-transpose on the corresponding skew-symmetric matrix.

This series of works strengthens the confidence in the conjecture that cut-transpose equiv-

alence should be a characterization of PME for arbitrary irreducible matrices. However, their

techniques are graph-theoretic and it is not clear how they can be generalized to arbitrary

matrices. We instead employ algebraic techniques and show that conjecture is indeed true,

thereby completely resolving Question 1. This extends the above results and also proves the

conjecture of Boussaïri and Chergui [BC16] about skew-symmetric matrices. Moreover, we

show that for any two n × n irreducible PME matrices A and B, the cut-transpose sequence

contains at most 2n matrices.

Theorem 1.1. Let A and B be two n× n irreducible matrices over any field. Then, A and B are principal

minor equivalent if and only if there exists a sequence of n× n matrices (A = A0, A1, . . . , Ak) with

k < 2n such that

for 0 ≤ i ≤ k− 1, Ai+1 = ct(Ai, Xi) for some cut Xi of Ai (2)

and Ak is diagonally equivalent to B.

Now, let us come to the question of an efficient algorithm to check if two given matrices are

PME (Question 2). If one is allowed the use of randomness, then there is a simple algorithm

for this task via a reduction to polynomial identity testing. Consider a n× n diagonal matrix Y
with variables y1, y2, . . . , yn in the diagonal. Observe that two n× n matrices A and B are PME

if and only if the following is a polynomial identity (i.e., coefficient-wise equality)

det(A + Y) = det(B + Y).

3

There is a simple randomized algorithm for polynomial identity testing: just plug-in some

random numbers for the variables and then check the equality (see [Sch80, DL78, Zip79]).

There is no deterministic polynomial time algorithm known for polynomial identity testing

in general, but we can still ask if there is one for this special case. We answer this question

positively. Recall the earlier discussion about reducible matrices and note that testing PME for

two matrices reduces to the same for their corresponding irreducible blocks.

Theorem 1.2. There exists a deterministic polynomial-time algorithm that for any two given n × n
matrices A and B over any field, decides whether the corresponding principal minors of A and B are

equal or not. If they are equal, then as a certificate, the algorithm outputs cut-transpose sequences for the

corresponding irreducible blocks of the two matrices as guaranteed by Theorem 1.1.

1.1 Applications

Polynomial Identity Testing. As mentioned earlier our motivation for the principal minor

equivalence problem came from the polynomial identity testing (PIT) problem. Given two

multivariate polynomials in a succinct representation, the PIT problem asks to decide whether

the two polynomials are identical (i.e., all corresponding coefficients are equal). One of the

widely studied and useful representation for multivariate polynomials is the determinantal

representation. We say that a polynomial f (x1, . . . , xm) ∈ F[x1, . . . , xm] has a determinantal

representation of size n if there exists matrices A0, A1, . . . , Am ∈ Fn×n
such that f = det(A0 +

∑ Aixi). The determinantal representation is known to be almost as expressive as algebraic

circuits (see [Val79] for more details). The PIT problem admits a randomized polynomial-

time algorithm [Sch80, DL78, Zip79]. Obtaining a deterministic algorithm for PIT remains a

challenging open problem that would have interesting implications in proving lower bounds,

and many other algorithmic applications (see, for example, [SY10]). Unable to solve it for the

general setting, the problem has been studied for various restricted settings.

One such restricted setting is symbolic determinant under rank one restriction. Here we

ask for testing whether det(A0 + ∑m
i=1 Aixi) = 0, for given matrices Ai, where rank(Ai) = 1 for

1 ≤ i ≤ m. There has been a lot of interest in this particular setting because of its connections

with some combinatorial optimization problems like bipartite matching and linear matroid

intersection (see [Edm67, Lov89, NSV92]), and algebraic problems like maximum rank matrix

completion (see [IKS10, Gee99, Mur93]). The connection with combinatorics also gives a

deterministic polynomial time algorithm for identity testing in this setting. In fact, there is also

an efficient blackbox PIT (quasi-polynomial time) known for this case [GT17] (blackbox means

that the algorithm cannot see the input, it can only evaluate the given polynomial at any point).

When we have an efficient algorithm to test whether a given polynomial from a class is

zero, the next natural question one can ask is to test whether two given polynomials from that

class are equal. If the class of polynomials is closed under addition, the equality question easily

reduces to testing zeroness of a given polynomial (from the same class). Many well studied

classes of polynomials have this property, for example, sparse polynomials, bounded-depth

circuits, constant fan-in depth-3 circuits etc. On the other hand, there are classes like ROABPs,

which are not closed under addition [KNS20], and for which the equality testing question

has been studied independently [GKST16]. Symbolic determinant with rank one restriction is

another such class. To the best of our knowledge, the class is not known to be closed under

addition. Given that zeroness testing is known for this class, a natural extension would be to ask

if two given polynomials from this class are equal. To the best of our knowledge, no non-trivial

(deterministic) algorithm was known for testing equality of two polynomials from this class

(symbolic determinant with rank one restriction). We show that this problem reduces to testing

principal minor equivalence, and hence, has a deterministic polynomial-time algorithm.

Theorem 1.3. There exists a deterministic polynomial time algorithm such that given two sequences of

n× n matrices (A0, A1, . . . , Am) and (B0, B1, . . . , Bm) over any field, with the rank of Ai and Bi being

4

at most 1 for 1 ≤ i ≤ n, it decides whether det(A0 + A1y1 + . . . + Amym) = det(B0 + B1y1 + . . . +
Bmym).

Determinantal Point Processes. As mentioned earlier, one motivation to study principal mi-

nors come from determinantal point processes (DPP). DPP are a family of probabilistic models

which originated in physics [Mac75], and which has subsequently found a wide range of ap-

plications in machine learning [KT12], for example, document summarization, recommender

systems, information retrieval etc. (see references given in [GBDK19, UBMR17]). Convention-

ally, a DPP is defined using principal minors of an n× n symmetric positive semidefinite matrix

K, called a kernel, whose eigenvalues are between 0 and 1. The DPP corresponding to kernel

matrix K is a probability distribution on subsets Y of {1, 2, . . . , n} such that for any subset

J ⊆ {1, 2, . . . , n},
Pr[J ⊆ Y] = det(KJ),

where KJ is the principal minor of K corresponding to set J (see [Kul12]). DPPs are useful in

settings where one needs to generate a diverse set of objects (larger principal minor means the

vectors associated with the subset span a larger volume).

Symmetric DPPs (as defined above with a symmetric kernel matrix) have a significant

expressive power, however they come with a limitation. Symmetric DPPs can model only

repulsive interactions. That is, any pair of items has a negative correlation – selection of one item

reduces the chances of selection of another item. To overcome this limitation, nonsymmetric

determinantal point process has been proposed, that is, DPP with a nonsymmetric kernel matrix

K. A nonsymmetric kernel matrix can model both positive and negative correlations. Lately,

there have been a few works on nonsymmetric DPPs [Bru18, GBDK19, RRS
+

22, HGDK22,

Arn24]. One of the crucial questions in the study of DPPs is to understand how are two

kernel matrices related which produce the same DPP, which was explicitly asked in some

works on learning DPPs [Bru18, BU24]. This is precisely the principal minor equivalence

problem. While it was already understood in the case of symmetric DPPs, we answer it for

nonsymmetric DPPs in this work. Theoerm 1.1 gives a characterization of the set of matrices

K′ such that DPP(K′) = DPP(K) for a given kernel matrix K (not necessarily symmetric).

Theorem 1.2 gives a deterministic polynomial time algorithm to test whether two given kernel

matrices will produce the same DPP.

1.2 Proof overview

In this subsection, we give a short overview of the proof techniques involved in proving The-

orems 1.1, 1.2 and 1.3. We start with Theorem 1.1 which characterizes principal minor equiv-

alence of irreducible matrices by cut-transpose equivalence. We have already discussed that

cut-transpose equivalence implies principal minor equivalence. Thus, only the other direction

remains to be shown, i.e., principal minor equivalence implies cut-transpose equivalence.

Reduction to the case of all nonzero entries. Our proof of Theorem 1.1 works with an

assumption that the matrices have all nonzero entries. We reduce the general case to this case

using a technique from earlier works [Loe86, HL84, Ahm23], namely, the transformation A 7→
(A + Z)adj

(or (A + Z)−1
), where Z is a diagonal matrix with entries as distinct algebraically

independent elements (or indeterminates). They showed that for any irreducible matrix A, the

matrix (A + Z)adj
has all nonzero entries. Moreover, two irreducible matrices A and B are PME

if and only if (A + Z)adj
and (B + Z)adj

are. They have also shown that A and (A + Z)adj
have

the same set of cuts. In Lemma 2.15, we show that the cut-transpose operation commutes with

operation A 7→ (A + Z)adj
. This means that matrices A and B are cut-transpose equivalent

if and only if (A + Z)adj
and (B + Z)adj

are. Hence, it is sufficient to prove Theorem 1.1 for

matrices with all nonzero entries.

5

1

2

3 4

5

6 1

4

2 6

3

5

Figure 1: Directed graphs associated with two matrices A and B.

No common cuts. To prove the characterization for matrices with cuts, a natural strategy

would be to somehow decompose the matrices along a chosen cut and then argue inductively

for the obtained smaller pairs of matrices. From Loewy’s characterization [Loe86], it follows

that for any two irreducible PME matrices A and B, if A has a cut, then B must also have one.

However, it is not necessary a subset of indices which is a cut in matrix A, is also a cut in matrix

B. In fact, it is possible that the two matrices do not have even one cut in common. Following

is such an example of two irreducible PME matrices.

A =

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 , B =

0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

 .

To see that the two matrices A and B are PME, recall that the determinant is a sum over

cycle covers in the directed graph associated with the matrix. And observe that the associated

directed graphs (Figure 1) have only one cycle, and thus, both matrices have only one nonzero

principal minor (i.e., det(A) = det(B) = 1). Now, to see that the two matrices do not have

a common cut, observe that for these matrices, any cut corresponds to a path in associated

directed graph. And there is no subset of vertices simultaneously forming a path in both the

graphs.

We handle such cases with no common cuts by transforming one of the matrices to have a

common cut with the other. Then we prove cut-transpose equivalence by induction based on

the size of the matrices. The following points summarize our proof strategy.

1. For any two irreducible PME matrices A and B, we show that the matrix A has a cut

in common either with matrix B or with another matrix B′ obtained from B via a cut-

transpose operation.

2. Then assuming that the two given matrices have a common cut, we “decompose” each

matrix along a common cut to obtain two smaller matrices. We argue that the two

obtained pairs of matrices are also PME and hence, are cut-transpose equivalent by

induction hypothesis. Then we are able to lift their cut-transpose equivalence to the

given matrices.

3. The base case for the induction is 4× 4 matrices.

We now elaborate on each of the above points.

Base case: 4 × 4 matrices If A and B are 4 × 4 irreducible PME matrices, then we show

(Lemma 3.2) that (i) either the two are diagonally equivalent or (ii) they have a common cut and

6

1

4

2 6

3

5

cut-transpose

along {1, 4}

1

4

5 3

6

2

Figure 2: Applying cut-transpose on the directed graph associated with matrix B.

when we do a cut-transpose on matrix A along the common cut, we get a matrix diagonally

equivalent to B. For 3× 3 or smaller matrices, there is no cut, and hence the two matrices must

be diagonally equivalent [HL84].

Getting a common cut. To get a common cut in the given matrices A and B, we consider a

(inclusion-wise) minimal cut S in A. We show that if S is not a cut in B then S must have size

two (Lemma 3.6). Moreover, in that case we can argue that there is a cut X in matrix B such

that S is a cut in another matrix B′, which is obtained by applying cut-transpose on B along cut

X (Lemma 3.3). Clearly, proving cut-transpose equivalence between A and B′ will imply the

same between A and B. The proofs of these two lemmas build on some other technical claims

(Theorem 3.1, Lemmas 3.2, 3.4, 3.5), and this is where most of the technical novelty lies.

Let us see how the matrix B′ is obtained in the example described above. Observe that the

matrix A has a cut S = {1, 2}, which is not a cut in matrix B. Let us consider the cut X = {1, 4}
in matrix B and apply cut-transpose along it. We obtain the following matrix B′, which has

S = {1, 2} as a cut, as desired. Figure 2 shows the cut-transpose operation on the associated

directed graph.

B =

0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

cut-transpose−−−−−−−→
along {1,4}

B′ =

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0

Decomposition into smaller matrices. One of our crucial ideas is to define the right decom-

position of a matrix along one of its cuts. For an n× n matrix A with a cut S ⊆ [n], we consider

a decomposition of A into two matrices A1 and A2 defined as follows: choose two arbitrary

indices s ∈ S and t ∈ S, and define A1 := A[S + s] and A2[S + t]. Recall that we assume

all off-diagonal entries to be nonzero, hence, the choice of s and t do not really matter. As

discussed earlier, we can assume that there is set S, which is a cut in both the matrices A and

B. It is easy to see that if A and B are PME, then so are Ai and Bi, for i = 1, 2.

If S is a minimal cut of A, then we show that A1 has no cut (Lemma 3.4). In that case, B1
also does not have a cut and is diagonally similar to A1 or AT

1 (from Loewy’s characterization).

If it so happens that A2 and B2 are already diagonally similar, then we show that A is either

diagonally similar to B or ct(B, S) (Lemma 3.7), depending on whether A1 is diagonally similar

to B1 or BT
1 .

The more interesting case is when A2 and B2 are not diagonally similar. Then by induction

hypothesis, we assume that A2 and B2 are cut-transpose equivalent. In the final step in the

7

proof, we show that we can lift the cut-transpose sequence that relates A2 and B2 to a cut-

transpose sequence for A and B. This lifting procedure is as follows: for each cut X in the

sequence, we either replace it with X ∪ S or keep it as it is, depending on whether X contains

t or not. We demonstrate this lifting of the cut-transpose sequence via an example. Consider

two PME matrices

A =

1 3 1 1 1
2 1 −1 −1 −1
1 2 2 1 1
2 4 −2 3 4
−1 −2 1 5 6

 , B =

1 2 1 −2 1
3 1 2 −4 2
1 −1 2 −2 1
−1 1 1 3 5
−1 1 1 4 6

Let us index the rows and columns of these two matrices by {a, b, c, d, e}. Observe that matrices

A and B have common cut S = {a, b}. We decompose each of them to obtain two smaller

matrices as given below. Here matrices A1 and B1 are submatrices of A and B, respectively,

indexed by {a, b, c}. Similarly, matrices A2 and B2 are submatrices indexed by {b, c, d, e}.

A1 =

1 3 1
2 1 −1
1 2 2

 , A2 =

1 −1 −1 −1
2 2 1 1
4 −2 3 4
−2 1 5 6

 , B1 =

1 2 1
3 1 2
1 −1 2

 , B2 =

1 2 −4 2
−1 2 −2 1
1 1 3 5
1 1 4 6

Observe that A1 = BT

1 . To relate A2 and B2, observe that applying cut-transpose on B2 along

cut {b, c}, gives us
1 2 2 2
−1 2 1 1
−2 −2 3 4
1 1 5 6

 .

The obtained matrix diagonally similar to A2 (they are related by diagonal matrix D =
diag(−2, 1, 1, 1)). Hence, the cut-transpose sequence for A2 and B2 is simply ({b, c}). To

lift this sequence to A and B we have to take union with {a, b} (because {b, c} contains b).

That is, we obtain the sequence ({a, b, c}). Finally, since A1 = BT
1 , we need to append this

sequence by another cut S = {c, d, e}. Hence, the cut-transpose sequence relating A and B is

({a, b, c}, {c, d, e}). Following equation shows this.

A =

1 3 1 1 1
2 1 −1 −1 −1
1 2 2 1 1
2 4 −2 3 4
−1 −2 1 5 6

 cut-transpose−−−−−−−→
along {a,b,c}

1 3 1 −2 1
2 1 −1 2 −1
1 2 2 −2 1
−1 −2 1 3 5
−1 −2 1 4 6

cut-transpose−−−−−−−→
along {c,d,e}

1 2 1 −2 1
3 1 2 −4 2
1 −1 2 −2 1
−1 1 1 3 5
−1 1 1 4 6

 = B

An efficient algorithm. Now we describe some of the ideas involved in our polynomial time

algorithm to find a cut-transpose sequence for two irreducible PME matrices. The lemmas

mentioned above all have constructive proofs, that is, the following tasks can be done in

polynomial time.

• Given a minimal cut S of matrix A, we can check whether it is also a cut of matrix B. If

not, then we can find an appropriate cut in B such that applying cut-transpose along it

gives us a matrix that has S as a cut.

8

• Given a cut-transpose sequence for A2 and B2 (as defined above), we can find one for A
and B.

Two parts which remain unclear are – (i) how to find a minimal cut of a matrix efficiently and

(ii) how to compute (A + Z)adj
efficiently for a given matrix A?

To find a cut of a matrix A, we first show that the function f (X) := rank(A[X, X]) +
rank(A[X, X]) is a submodular function (Lemma 3.8). Then observe that if an irreducible

matrix A has a cut, then cuts are precisely those sets X which minimize f (X) under the

constraints |X| ≥ 2 and |X| ≥ 2. To find an inclusion-wise minimal cut, we simply find a

minimum size cut, using the known algorithms for submodular function minimization under

such constraints (Lemma 3.8).

Coming to the second question, recall that instead of matrix A, we consider (A + Z)adj
to

ensure that all matrix entries are nonzero. Here Z is a diagonal matrix with distinct algebraically

independent elements (or indeterminates). However, it is not clear if we can compute (or even

write down) the entries (A + Z)adj
efficiently (succinctly). For efficiency, we need to replace the

diagonal entries in Z with elements from the given field (or a large enough algebraic extension).

Using ideas from polynomial identity testing, we show that in (deterministic) polynomial time,

we can compute an appropriate matrix Z, which ensures that the entries of (A + Z)adj
are all

nonzero (Claim 3.9).

Applications to PIT. As discussed earlier, our algorithm to test principal minor equivalence of

two matrices A and B can also be viewed as an algorithm to test if the following is a polynomial

identity:

det(A + Y) = det(B + Y),

where Y is a diagonal matrix with its diagonal entries being all distinct variables. Theo-

rem 1.3 considers a more general PIT question: whether det(A0 + A1y1 + . . . + Amym) =
det(B0 + B1y1 + . . . + Bmym) for given rank-1 matrices A1, A2, . . . , Am, B1, B2, . . . , Bm and arbi-

trary matrices A0, B0. We get a deterministic algorithm for this more general PIT question via a

reduction to testing principal minor equivalence of two given matrices (Section 5). The reduc-

tion uses matroid intersection as a subroutine, which is known to be solvable in deterministic

polynomial time.

2 Notation and Preliminaries

We use [n] to denote the set of positive integers {1, 2, . . . , n}. For any X ⊆ [n], X denotes the

complement set X. For two sets S and T, S∆T denotes the symmetric difference of S and T. For

a set X and an element e, we use X + e to denote the set X ∪ {e} and X − e to denote the set

X \ {e}.
Suppose that w1 = (w1,1, w1,2, . . . , w1,k1)

T, . . . , wℓ = (wℓ,1, wℓ,2, . . . , wℓ,kℓ)
T

are ℓ vectors over

a field F. Then, we use (w1 | · · · | wℓ) to denote the concatenation of the vectors w1, . . . , wℓ as

follows

(w1 | · · · | wℓ) = (w1,1, . . . , w1,k1 , . . . wℓ,1, . . . , wℓ,kℓ)
T.

For an n× n matrix A and S, T ⊆ [n], A[S, T] denotes the submatrix of A with rows indexed

by elements in S and columns indexed by elements in T. For S ⊆ [n], let A[S] denote the

submatrix A[S, S]. When S = {i}, then A[i, T] = A[S, T]. We follow a similar notation when T
is a singleton. For a square matrix A, by Aadj

, we denote the adjoint, or adjugate, of A.

2.1 Principal minor equivalence

Suppose that A and B are two n× n matrices over any field. The matrix A is said to be principal

minor equivalent to B if the corresponding principal minors of A and B are equal, i.e. for all

9

S ⊆ [n], det(A[S, S]) = det(B[S, S]). We use A PME

= B to denote that A is the principal minor

equivalent to B.

The following lemma shows that the principal minor equivalence relation between two ma-

trices remains unchanged under adjoint operation and shift by appropriate diagonal matrices.

It is a straightforward consequence of [HL84, Lemma 4].

Lemma 2.1. Let A and B be two n× n matrices over a field F. Let D be an n× n diagonal matrix over

F such that A + D and B + D are non-singular. Then, A PME

= B if and only if (A + D)adj PME

= (B + D)adj
.

2.2 Reducible and Irreducible matrix

Definition 2.2 (Reducible and Irreducible matrix). A matrix is called reducible if it can be written

as a block upper triangular matrix after permuting the rows and the corresponding columns.

A matrix that is not reducible is called irreducible.

Equivalently, if we replace the nonzero off-diagonal entries with one and the diagonal

entries with zero, then a reducible matrix corresponds to the adjacency matrix of a directed

graph having more than one strongly connected component.

From the above definition, it is easy to see that any matrix A with all nonzero off-diagonal

entries is an irreducible matrix. The above definition directly gives us the following observation.

Observation 2.3. Let A be an n× n matrix over a field F such that the row and columns of A are

indexed by [n]. Let GA be a directed graph defined as follows: the vertex set in [n], and a tuple (i, j) is an

edge of GA if and only if i ̸= j and A[i, j] ̸= 0. Let I1, I2, . . . , Is be the strongly connected components

of A. Then, after permuting the rows and the corresponding columns, the matrix A can be made a block

upper triangular matrix, and the diagonal blocks A(I1), A(I2), . . . , A(Is) are irreducible matrices.

For two reducible matrices A and B, the next lemma helps to reduce the testing of whether

A PME

= B to multiple instances of testing whether two irreducible matrices have the same corre-

sponding principal minors. The following lemma is a direct consequence of [Ahm23, Corol-

lary 5.4].

Lemma 2.4. Let A and B two n× n matrices over a field F. Suppose that after permuting the rows and

the corresponding columns, A can be written as a block upper triangular matrix with s diagonal blocks

A1, A2, . . . , As where each Ai is irreducible and the rows and columns of Ai are indexed by set Ti ⊆ [n].
Then, A PME

= B if and only if the following holds.

1. After permuting some rows and the corresponding columns, B can be written as a block upper

triangular matrix with s diagonal blocks B1, B2, . . . , Bs where each Bi is irreducible and the rows

and columns of Bi are indexed by set Ti.

2. For each i ∈ [s], Ai
PME

= Bi.

2.3 Cut of a matrix

Definition 2.5 (Cut of a matrix). Let A be an n × n matrix over a field F such that n ≥ 4.

A subset X ⊂ [n] is called a cut in A if 2 ≤ |X| ≤ n − 2 and the rank of the submatrices

A[X, X] and A[X, X] are at most one.

In particular, if A is an irreducible matrix and X is cut in A, then rank(A[X, X]) =
rank(A[X, X]) = 1.

For an n× n matrix A, a cut X in A is called a minimal cut if there exists no other cut X′

in A such that X′ ⊆ X. Note that any cut of size two is always a minimal cut. Since we can

determine the rank of a matrix in polynomial time, we arrive at the following observation.

10

Observation 2.6. Given an n× n matrix A over F and X ⊆ [n] with 2 ≤ |X| ≤ n− 2, it can be

decided in polynomial time whether X is a cut in A.

Next, we show that the set of cuts remains the same after shifting any matrix by an appro-

priate diagonal matrix.

Lemma 2.7. Let A be an n× n matrix over a field F. Let D be an n× n diagonal matrix over F such

that A + D is non-singular. Then, A and (A + D)adj
have the same set of cuts.

For proof, see Appendix A.

2.4 Diagonal similarity

Suppose that A and B are two n× n matrices over a field F. We say that A is diagonally similar

to B, denoted by A DS

= B, if there exists an n× n invertible diagonal matrix D over F such that

B = DAD−1
.

In the following claim, we describe how to efficiently check whether two matrices are

diagonally similar or not.

Claim 2.8. Given two n × n matrices A and B over F, in polynomial time, we can decide whether

A DS

= B.

Proof Sketch. Observe that if A DS

= B then we must have an invertible diagonal matrix D such

that B[i, j]/A[i, j] = D[i]/D[j], for any i ̸= j with A[i, j] ̸= 0. Consider a weighted directed

graph G on n vertices such that (i, j) is an edge for i ̸= j if and only if A[i, j] ̸= 0 or A[j, i] ̸= 0.

Let us define the weight of an edge (i, j) as w(i, j) = B[j, i]/A[j, i] or A[i, j]/B[i, j] whichever

is defined. If both are defined, they must be equal, otherwise A and B cannot be diagonally

similar. Observe that for any path (i0, i1, . . . , ik) in graph G, it must be that

D[ik]/D[i0] = w(i0, i1)w(i1, i2) · · ·w(ik−1, ik)

Moreover, any diagonal matrix satisfying the above equation for all paths in G will give us

the desired diagonal matrix D. So, we construct D for given matrices A and B as follows.

For any connected component in G, pick an arbitrary vertex i from the component and set

D[i] = 1. For any other vertex j in that component, find a path (i = i0, i1, i2, . . . , ik = j) and

set D[j] = w(i0, i1)w(i1, i2) · · ·w(ik−1, ik). Repeating this for every component in G will give

us matrix D. Finally we should check that B[i, j]/A[i, j] = D[i]/D[j], for every i ̸= j with

A[i, j] ̸= 0.

One can observe that if A DS

= B or A DS

= BT
, then A PME

= B. Next, we consider the converse

direction. Hartfiel and Loewy [HL84, Theorem 3] showed that when n = 2 or 3, and A is an

irreducible matrix, A PME

= B implies that A DS

= B or A DS

= BT
. Later, Lowey [Loe86, Theorem 1]

showed that if A is an irreducible matrix and has no cut, then A PME

= B implies A DS

= B. Therefore,

by combining them, we have the following lemma:

Lemma 2.9. Let A and B two n× n matrices over a field F such that A is irreducible and A PME

= B.

Then, the following holds:

1. if n = 2 or 3, then A DS

= B or A DS

= BT
.

2. if n ≥ 4 and A has no cut, then A DS

= B or A DS

= BT
.

The next lemma shows that the diagonal similarity relation carries over through the adjoint.

It directly follows from [HL84, Lemma 4].

Lemma 2.10. Let A and B be two n× n matrices over F. Let D be an n× n diagonal matrix such that

both A + D and B + D are invertible. Then, A DS

= B if and only if (A + D)adj DS

= (B + D)adj
.

11

2.5 Cut-transpose operation

In the previous section, we have seen that under diagonal similarity, the values of the principal

minors of a matrix remain unchanged. Now, we describe another operation under which

also the values of the principal minors remain the same. This operation was defined by

Ahmadieh [Ahm23, Lemma 4.5], and we refer to it as cut-transpose.

Definition 2.11 (Cut-transpose operation). Let A be an n× n matrix, and X ⊆ [n] such that

1 ≤ |X| ≤ n− 1 and rank(A[X, X]) ≤ 1 and rank(A[X, X]) ≤ 1. Let the matrix A be written asA(X) p · qT

u · vT A(X)

 ,

where p, v ∈ F|X| and q, u ∈ F|X| Then, the cut-transpose operation on A with respect to X
transforms A to a new matrix Ã as follows:

Ã =

A(X) p · uT

q · vT A(X)T

 .

Remark 2.12. Note that in the above definition, for every nonzero α, β ∈ F, the rank-one

submatrices A[X, X] and A[X, X] are equal to (αp) · (q/α)T
and (βu) · (v/β)T

, respectively.

Depending on what rank one decomposition we choose, we can get a different matrix after

applying the cut-transpose operation, and let ct(A, X) be exactly the set of all such matrices.

However, all the matrices in ct(A, X) are diagonally similar to each other. Therefore, all the

matrices in ct(A, X) have the same corresponding principal minors. Thus, slightly abusing the

notation, we also use ct(A, X) to denote any matrix we can get after applying the cut-transpose

operation on A with respect to X. In particular, if |X| = n− 1 then ct(A, X) = A, and if |X| = 1
then ct(A, X) = AT

.

For a k× ℓ matrix M with rank(M) ≤ 1, in polynomial time, we can find p ∈ Fk
and q ∈ Fℓ

such M = p · qT
. Thus, we have the following observation.

Observation 2.13. Let A be an n× n matrix over F, and X ⊆ [n] such that rank(A[X, X]) ≤ 1 and

rank(A[X, X]) ≤ 1. Then, given A and X, we can compute ct(A, X) in polynomial time.

Now, we mention some properties of the cut-transpose operation. First, we show that under

cut-transpose operation, the values of the principal minors of a matrix remain the same.

Lemma 2.14. Let A be an n× n matrix over a field F. Let X ⊆ [n] be a cut in A. Then, A PME

= ct(A, X).

For proof, see Appendix A. Next, we show that the cut-transpose operation on a matrix

carries over to the adjoint of A.

Lemma 2.15. Let A be an n× n matrix over a field F. Then, for any X ⊆ [n] with rank(A[X, X]) ≤ 1
and rank(A[X, X]) ≤ 1,

ct(A, X)adj = ct(Aadj, X).

From Remark 2.12, ct(A, X) is a family of matrices such that all the matrices are diagonally

similar. The set ct(A, X)adj
consists of all the matrices we get after taking the adjoint of the

matrices in ct(A, X). For nonzero α, β ∈ F, let Dα,β be an n × n diagonal matrix defined as

follows: Dα,β[i, i] = α for i ∈ X and β otherwise. Then, from Remark 2.12 and [HL84, Lemma 4],

if Ã ∈ ct(A, X),
ct(A, X)adj = {Dα,β · Ãadj · D−1

α,β | α, β ∈ F \ {0}}.

12

On the other hand, from Claim A.1, both rank(Aadj[X, X]) and rank(Aadj[X, X]) are at most

one. Thus, if A′ ∈ ct(Aadj, X),

ct(Aadj, X) = {Dα,β · A′ · D−1
α,β | α, β ∈ F \ {0}}.

In the proof, we show that there exists a common matrix in ct(A, X)adj
and ct(Aadj, X), thus

implying the above lemma. For proof, see Appendix A. Next, we mention a definition that will

be useful in this article.

Definition 2.16. Let A and B be two matrices over a field F, and their rows and columns are

indexed by I. Let X = (X1, X2, . . . , Xk) be a sequence of subsets of I. We say A, B and X satisfy

property P if X produces a sequence of matrices (A0 = A, A1, A2, . . . , Ak) with the following

property:

∀i ∈ [k], Ai = ct(Ai−1, Xi) where Xi is ∅, I, or a cut in Ai−1, and Ak
DS

= B.

3 Proof of Theorem 1.1: Characterizing and Testing of Prinicipal

Minor Equivalence for Irreducible Matrices

3.1 Some useful results on cut and cut-transpose operation

Theorem 3.1. Let A be an n× n matrix over F with nonzero off-diagonal entries. Let S ⊆ [n] be a cut

in A. Then, for any T ⊆ [n] the following holds.

1. If T ⊆ S or T ⊆ S, then T is a cut in A if and only if T is cut in ct(A, S)

2. Otherwise, T is a cut in A if and only if T∆S is a cut in ct(A, S).

Proof. We start with the proof of the first part of the theorem.

Proof of the first part. Assume that T ⊆ S and T is a cut in A. Then, the matrix A has the

following structure:

A =

T S \ T S

T ∗ u1 · vT
1 u1 · vT

2

S \ T p1 · qT
1 ∗ u2 · vT

2

S p2 · qT
1 p2 · qT

2 ∗

such that

u1, q1 ∈ F|T|, v1, u2, p1, q2 ∈ F|S|−|T|, and v2, p2 ∈ F|S|,

and ‘∗’ marked submatrices can be arbitrary. After applying the cut-transpose operation on A
with respect to the cut S,

ct(A, S)[T, T] = u1 · (v1 | p2)
T

and ct(A, S)[T, T] = (p1 | v2) · qT
1 .

Therefore, T is also a cut in ct(A, S).
For the converse direction, observe that S is a cut in ct(A, S), and A can be seen as a matrix

we get after applying the cut-transpose operation on ct(A, S) with respect to S. Therefore, the

above analysis also says that T will be a cut in A if it is a cut in ct(A, S) and T ⊆ S.

Now we assume that T ⊆ S. Note that the set of cuts in A is the same as the set of cuts in

AT
. Since T ⊆ S, from the above discussion, T is a cut in AT

if and only if T is a cut in ct(AT, S).
Observe that ct(AT, S) = ct(A, S). Thus, when T ⊆ S, the set T is a cut in A if and only if T is

a cut in ct(A, S).

13

Proof of the second part. Assume that T is neither a subset of S nor a subset of S, and T is a

cut in A. This implies that S \ T, S∩ T and T \ S are nonempty. Since S is a cut in A, the matrix

A has the following structure.

A =

S \ T S ∩ T T \ S S ∪ T

S \ T ∗ ∗ u1 · vT
1 u1 · vT

2

S ∩ T ∗ ∗ u2 · vT
1 u2 · vT

2

T \ S p1 · qT
1 p1 · qT

2 ∗ ∗

S ∪ T p2 · qT
1 p2 · qT

2 ∗ ∗

(3)

such that

u1, q1 ∈ F|S\T|, v1, p1 ∈ F|T\S|, v2, p2 ∈ F|S∪T|, and u2, q2 ∈ F|S∩T|.

On the other hand, the cut T implies the following structural constraint for A.

A =

S \ T S ∩ T T \ S S ∪ T

S \ T ∗ c1 · dT
1 c1 · dT

2 ∗

S ∩ T a1 · bT
1 ∗ ∗ a1 · bT

2

T \ S a2 · bT
1 ∗ ∗ a2 · bT

2

S ∪ T ∗ c2 · dT
1 c2 · dT

2 ∗

(4)

such that

b1, c1 ∈ F|S\T|, a2, d2 ∈ F|T\S|, b2, c2 ∈ F|S∪T|, and a1, d1 ∈ F|S∩T|.

Since the off entries of A are nonzero, comparing rank-one submatrices in Eq. (3) and Eq. (4),

the following holds:

1. From A[S \ T, T \ S], b1 = α · q1 and a2 = α−1 · p1 some nonzero α ∈ F.

2. From A[S ∪ T, S ∩ T], d1 = β · q2 and c2 = β−1 · p2 for some nonzero β ∈ F.

3. From A[T \ S, S \ T], d2 = γ · v1 and c1 = γ−1 · u1 for some nonzero γ ∈ F.

4. From A[S ∩ T, S ∪ T], b2 = δ · v2 and a1 = δ−1 · u2 for some nonzero β ∈ F.

Thus, using Eq. (3) and Eq. (4), the matrix A has the following form.

A =

S \ T S ∩ T T \ S S ∪ T

S \ T ∗ ζ(u1 · qT
2) u1 · vT

1 u1 · vT
2

S ∩ T ω−1(u2 · qT
1) ∗ u2 · vT

1 u2 · vT
2

T \ S p1 · qT
1 p1 · qT

2 ∗ ω(p1 · vT
2)

S ∪ T p2 · qT
1 p2 · qT

2 ζ−1(p2 · vT
1) ∗

(5)

14

where ζ = βγ−1
and ω = δα−1

. From Eq. (5), applying cut-transpose operation on A with

respect to the cut S, we get that

ct(A, S)[T∆S, T∆S] = (ζu1 | v1) · (q2 | ζ−1 p2)
T, and

ct(A, S)[T∆S, T∆S] = (ω−1u2 | v2) · (q1 | ωp1)
T.

Therefore, S∆T is a cut in ct(A, S).
For the converse direction, assume that T∆S is a cut in ct(A, S). As mentioned earlier, A

can be see as the matrix we get after applying cut-transpose operation on ct(A, S) with respect

to the cut S. Therefore, the above discussion implies that if T∆S is a cut in ct(A, S), then

(T∆S)∆S = T is a cut in A. Thus, when T is neither a subset of S nor a subset of S, T is a cut in

A if and only in T∆S is a cut in ct(A, S). This completes the proof of our theorem.

Lemma 3.2. Let A be a 4× 4 matrix over F with all off-diagonal entries are nonzero. Let B be another

4× 4 matrix over F such that A PME

= B. Then, one of the following two holds:

1. A DS

= B or A DS

= BT
.

2. The exists a common cut in A and B. Furthermore, for any common cut X of A and B,

ct(A, X)
DS

= B or ct(A, X)
DS

= BT
.

Lemma 3.3. Let A and B be two n× n matrices over field F with nonzero off-diagonal entries such that

A PME

= B and S = {s1, s2} is a cut in A of size 2. Then either S is a cut in B or Xi for each i ∈ {1, 2},
defined as follows

Xi = {t ∈ S | A(S + t) DS

= B(S + t)} ∪ {si},
is a cut in B such that S is a cut in ct(B, Xi).

Proof. Without loss of generality, let S = {1, 2}. Let 3 ≤ t ≤ n. Since A PME

= B, it follows that

A({1, 2, t}) PME

= B({1, 2, t}). From Lemma 2.9, we have A({1, 2, t}) DS

= B({1, 2, t}) or B({1, 2, t})T
.

Hence, there exists a diagonal matrix Dt with Dt[1, 1] = 1 such that

Dt A({1, 2, t})D−1
t = B({1, 2, t}) or

Dt A({1, 2, t})D−1
t = B({1, 2, t})T.

For any t for which the former condition holds, we will have

B[1, t]
B[2, t]

= A[1,t]A[2,1]
A[2,t]B[2,1] =

A[1, 3]A[2, 1]
A[2, 3]B[2, 1]

and (6)

B[t, 1]
B[t, 2]

= A[t,1]A[1,2]
A[t,2]B[1,2] =

A[3, 1]A[1, 2]
A[3, 2]B[1, 2]

. (7)

The last two equalities hold because {1, 2} is a cut in A. For any t for which the later condition

holds, we will have

B[1, t]
B[2, t]

= A[t,1]A[1,2]
A[t,2]B[2,1] =

A[3, 1]A[1, 2]
A[3, 2]B[2, 1]

and (8)

B[t, 1]
B[t, 2]

= A[1,t]A[2,1]
A[2,t]B[1,2] =

A[1, 3]A[2, 1]
A[2, 3]B[1, 2]

. (9)

If equations (6) and (7) hold for every 3 ≤ t ≤ n, or if equations (8) and (9) hold for every

3 ≤ t ≤ n, then {1, 2} will be a cut of B.

Suppose that is not true. It follows that

A[1, 3]A[2, 1]
A[2, 3]

̸= A[3, 1]A[1, 2]
A[3, 2]

.

15

Let P ⊆ {3, 4, . . . , n} be the set of indices for which equations (6), (7) hold and let Q :=
{3, 4, . . . , n} \ P be the set of indices for which equations (8), (9) hold.

We will show that P ∪ {1} is a cut in B. Consider two indices s ∈ P and t ∈ Q. Consider

the set T = {1, 2, s, t}. Since equations (6) and (7) hold for s and do not hold for t, we have that

B[1, t]
B[2, t]

̸= B[1, s]
B[2, s]

or

B[t, 1]
B[t, 2]

̸= B[s, 1]
B[s, 2]

.

Hence, {1, 2} is not a cut in B[T] and B[T] ̸DS

= A[T]. But, we have that A[T] PME

= B[T]. Hence,

there must be a cut in B[T] (Lemma 3.2) In fact, B[T] will have more than one cut. Because if

B[T] has a unique cut, say {1, t}, then that will also be a unique cut of A[T] (Lemma 3.2). But,

A[T] has a cut {1, 2}.
So, we conclude that B[T] has cuts {1, s} and {1, t}. Hence, we can write

B[s, t]/B[1, t] = B[s, 2]/B[1, 2] and

B[t, s]/B[2, s] = B[t, 1]/B[2, 1]

Using these equations for every s ∈ P and every t ∈ Q, we get that X = P ∪ {1} is a cut in B.

Similarly, we can show that X′ = P ∪ {2} is a cut in B. From Theorem 3.1, X∆X′ = {1, 2} is a

cut of ct(B, X) and ct(B, X′).

Lemma 3.4. Let A be an n× n matrix over F such that the off-diagonal entries of A are nonzero. Let

S be a minimal cut in A of size greater than two. Let T be a nonempty subset of S, X ⊆ S ∪ T and

X̃ = (S ∪ T) \ X. Then, if X is a cut in A(S ∪ T), then either S ⊆ X or S ⊆ X̃.

In particular, if T = {t} for some t ∈ S, then the matrix A(S + t) have no cut.

Proof. For the sake of contradiction, assume that X ⊆ S ∪ T is a cut of A(S + T) such that

neither S ⊆ X nor S ⊆ X̃. Since |S| ≥ 3, either |S ∩ X| ≥ 2 or |S \ X| ≥ 2. Next, we divide our

proof into the following four cases.

Case I: We assume that |S ∩ X| ≥ 2 and |T \ X| ̸= ∅. Then, we show that S ∩ X is cut in A.

This will violate the minimality of S.

Case II: We assume that |S ∩ X| ≥ 2 and |T \ X| = ∅. This implies that T ⊆ X, hence X̃ ⊆ S.

Therefore, |S \ X| ≥ 2 and T ∩ X is nonempty. In this case, we show that S \ X is cut in

A, which will again violate the minimality of S.

Case III: We assume that |S \ X| ≥ 2 and T ∩ X ̸= ∅. In this case, we show that S \ X is a cut

in A which will violate the minimality of S.

Case IV: We assume that |S \X| ≥ 2 and T ∩X = ∅. Like Case II, this implies that |S∩X| ≥ 2
and T \ X is nonempty. In this case, we show that S ∩ X is a cut in A. This will violate

the minimality of S.

The proof of all the above four cases is similar. We divide the index set S ∪ T of the matrix

A(S ∪ T) into the four following disjoint subsets

S ∩ X, S \ X, T ∩ X, T \ X,

and divide the index set [n] of the matrix A into the five following disjoint subsets

S ∩ X, S \ X, T ∩ X, T \ X, S ∪ T.

The cut S will put some structural constraint on A and the cut X will put some structural

constraints on A(S ∪ T). As we did in the proof of Theorem 3.1, by comparing the same rank

one submatrices, we show an appropriate subset is a cut in A. Here, we only mention the detail

proof of Case I. The other cases can be proven similarly.

16

Case I. The cut X in A(S ∪ T) gives the following structural constraint.

A(S ∪ T) =

S ∩ X S \ X T ∩ X T \ X

S ∩ X ∗ a1 · bT
1 ∗ a1 · bT

2

S \ X c1 · dT
1 ∗ c1 · dT

2 ∗

T ∩ X ∗ a2 · bT
1 ∗ a2 · bT

2

T \ X c2 · dT
1 ∗ c2 · dT

2 ∗

(10)

where

a1, d1 ∈ F|S∩X|, b1, c1 ∈ F|S\X|, a2, d2 ∈ F|T∩X|, and b2, c2 ∈ F|T\X|,

and ‘∗’ marked submatrices can be arbitrary. As S is a cut in A, we have the following structure

of A.

A =

S ∩ X S \ X T ∩ X T \ X S ∪ T

S ∩ X ∗ ∗ p1 · qT
1 p1 · qT

2 p1 · qT
3

S \ X ∗ ∗ p2 · qT
1 p2 · qT

2 p2 · qT
3

T ∩ X u1 · vT
1 u1 · vT

2 ∗ ∗ ∗

T \ X u2 · vT
1 u2 · vT

2 ∗ ∗ ∗

S ∪ T u3 · vT
1 u3 · vT

2 ∗ ∗ ∗

(11)

where

p1, v1 ∈ F|S∩X|, p2, v2 ∈ F|S\X|, q1, u1 ∈ F|T∩X|, q2, u2 ∈ F|T\X|, and u3, q3 ∈ F|S∪T|.

Note that T \ X is nonempty. Since the off-digonal entries of A are nonzero, comparing the

rank-one submatrices in Eq. (10) and Eq. (11), we get

1. From A[T \ X, S ∩ X], d1 = αv1 for some nonzero α ∈ F.

2. From A[S ∩ X, T \ X], a1 = βp1 for some nonzero β ∈ F.

This combined with Eq. (10) and Eq. (11), we have that

A[S ∩ X, S ∩ X] = p1 · (βb1 | q1 | q2 | q3)
T, and

A[S ∩ X, S ∩ X] = (αc1 | u1 | u2 | u3) · vT
1 .

Thus, S ∩ X is cut in A which violates the minimality of S. This completes the proof of Case I.

Like Case I, we can prove the other three cases. The details are omitted here.

Now we prove the other part of the lemma. Suppose this T is a singleton set, i.e. T = {t}
for some t ∈ S. For the sake of contradiction, assume that there exists a cut X in A(S+ t). Then,

from the first part of the lemma, either S ⊆ X or S ⊆ X̃ where X̃ = (S + t) \ X. Without loss

of generality, assume S ⊆ X. Then |X̃| ≤ 1. This is a contradiction since X is a cut in A(S + t).
Therefore, A(S ∪ T) has no cut when T is a singleton set.

Lemma 3.5. Let A be an n× n matrix over F with nonzero off-diagonal entries. Let S ⊆ [n] be a cut

in the matrix A and t ∈ S, and X ⊆ S is a cut in A(S + t). Then, X is also a cut in the matrix A.

17

Proof. The off-diagonal entries of A are nonzero. The sets X and S are cuts in A(S + t) and A,

respectively. This implies that the matrix A can be written as follows.

A =

X S \ X t S− t

X ∗ u1 · vT
1 u1 u1 · vT

2

S \ X p1 · qT
1 ∗ u2 u2 · vT

2

t qT
1 qT

2 ∗ ∗

S− t p2 · qT
1 p2 · qT

2 ∗ ∗

where

u1, q1 ∈ F|X|, v1, u2, p1, q2 ∈ F|S\X|, v2, p2 ∈ F|S|−1,

and ‘∗’marked submatrices can be arbitrary. From the above structure of A, observe that

A[X, X] = u1 · (v1 | 1 | v2)
T

and A[X, X] = (p1 | 1 | p2) · qT
1 .

Therefore, X is a cut in A.

Lemma 3.6. Let A and B be two n × n matrices over F with off-diagonal entries are nonzero. Let

A PME

= B, and S ⊆ n be a minimal cut in A of size greater than two. Then, S is also a cut in B.

Proof. Let s ∈ S. We show that for all t ∈ S + s, the set Tt := {s, t} is a cut in B(S + Tt). This

will imply that

B[S, t] = α · B[S, s] and B[t, S] = β · B[s, S]

for some α, β ∈ F. Hence, S is a cut in B.

Since S is a minimal cut in A of size greater than two, from Lemma 3.5, there are no cuts in

both the matrices A(S + s) and A(S + t). We have that A PME

= B. Therefore, applying Lemma 2.9,

A(S + s) DS

= B(S + s) and A(S + t) DS

= B(S + t). This implies that both B(S + s) and B(S + t)
have no cuts.

For the sake of contradiction, assume that Tt is not a cut in B(S + Tt). Note that Tt is a

cut in A(S + Tt) of size two. Then, from Lemma 3.3, there exists a cut X ⊆ S + Tt in the

matrix B(S + Tt) such that s ∈ X but t /∈ X. Since |S + Tt| ≥ 5, either |X| > 2 or the size of

X̃ := (S + Tt) \ X is greater than 2. If |X| > 2, then X− s is a cut in B(S + t). Otherwise, X̃− t
is a cut in B(S + s). In both the cases, we have contradictions. Thus, Tt is a cut in B(S + Tt) for

all t ∈ S + s. This completes our proof.

Lemma 3.7. Let A and B be two n× n matrices over F with nonzero off-diagonal entries and A PME

= B.

Let S ⊆ [n] be a minimal cut in A and also a cut in B. Let s ∈ S such that A(S + s) DS

= B(S + s).
Then, either A DS

= B or ct(A, S) DS

= B.

Proof. Without loss of generality, assume that S = [i] and s = i. Then, from the hypothesis,

B(S + i) PME

= A(S + i). Since S is a minimal cut in A, using Lemma 3.4 and Lemma 2.9, there

exists an (i + 1)× (i + 1) invertible diagonal matrix D1 such that D1[i + 1, i + 1] = 1 and

D1 · A([i + 1]) · D−1
1 = B([i + 1]) or B([i + 1])T.

From the hypothesis, there exists another (n− i + 1)× (n− i + 1) invertible diagonal matrix

D2 such that D2[i, i] = 1 and

B(S + i) = D2 · A(S + i) · D−1
2 . (12)

We assume that the rows and columns of D2 are indexed by S + i. Next, we divide our proof

into the following two cases.

18

Case I: In this case, we assume that

D1 · A([i + 1]) · D−1
1 = B([i + 1]), (13)

and show A DS

= B. Let D be an n× n invertible matrix defined as follows: For all k ∈ [n],

D[k, k] =

{
D1[k, k] if k ∈ [i]

D2[k,k]
D2[i+1,i+1] otherwise .

We will show that B is equal to DAD−1
. Since S is a common cut in both the matrices A and

B, the rank-one submatrices A[S, S] and B[S, S] can be written as follows.

A[S, S] = A[S, i + 1] · A[i, S]
A[i, i + 1]

and A[S, S] = A[S, i] · A[i + 1, S]
A[i + 1, i]

(14)

B[S, S] = B[S, i + 1] · B[i, S]
B[i, i + 1]

and B[S, S] = B[S, i] · B[i + 1, S]
B[i + 1, i]

(15)

From Eq. (12) and Eq. (13),

B[i, i + 1] = A[i, i + 1] · D−1
2 [i + 1, i + 1]

B[i, S] = A[i, S] · D−1
2 (S), and

B[S, i + 1] = D1(S) · A[S, i + 1]

Therefore, using the above equation and Eq. (15),

B[S, S] = D1(S) · A[S, i + 1] · D2[i + 1, i + 1] · A[i, S] · D−1
2 (S)

A[i, i + 1]

= D(S) · A[S, S] · D−1(S)

Similarly, we can show that

B[S, S] = D(S) · A[S, S] · D−1(S).

Applying Eq. (13) and Eq. (12), we get that

B(S) = D(S) · A(S) · D−1(S) and

B(S) = D(S) · A(S) · D−1(S).

Thus, B = DAD−1
.

Case II: In this case, we assume that

D1 · A([i + 1]) · D−1
1 = B([i + 1])T, (16)

and show B DS

= ct(A, S). Let D be an n× n invertible diagonal matrix defined as follows: For

all k ∈ [n],

D[k, k] =

{
D−1

1 [k, k] if k ∈ [i]
D2[k,k]

D2[i+1,i+1] otherwise .

We will prove that B is equal to D · ct(A, S) ·D−1
. Since S is a cut, the matrix A has the following

structure.

A =

S S
S A(S) A[S, i + 1] · A[i,S]

A[i,i+1]

S A[S, i] · A[i+1,S]
A[i+1,i] A(S)

.

19

Thus, ct(A, S) can be written as follows.

ct(A, S) =

S S
S A(S) A[i + 1, S]T · A[i,S]

A[i,i+1]

S A[S, i] · A[S,i+1]T

A[i+1,i] A(S)

.

From Eq. (12) and Eq. (16), we have that

B[i, i + 1] = A[i, i + 1] · D−1
2 [i + 1, i + 1]

B[S, i + 1] = D−1
1 (S) · A[i + 1, S]T

B[i, S] = A[i, S] · D−1
2 (S).

Using the above equation and Eq. (15),

B[S, S] = D−1
1 (S) · A[i + 1, S]T · D2[i + 1, i + 1] · A[i, S] · D−1

2 (S)
A[i, i + 1]

= D(S) · ct(A, S)[S, S] · D−1(S)

Similarly, we can show that

B[S, S] = D(S) · ct(A, S)[S, S] · D−1(S).

Applying Eq. (16) and Eq. (12), we get that

B(S) = D(S) · ct(A, S)(S) · D−1(S), and

B(S) = D(S) · ct(A, S)(S) · D−1(S).

Thus, B = D · ct(A, S) · D−1
.

Lemma 3.8. Let A be an n× n irreducible matrix over a field F. Then, we can test whether A has a cut

in poly(n) time. Moreover, if there exists a cut in A, then a minimal cut of A can be computed using

poly(n) time.

Proof. Let 2[n] denote the set of all subsets of [n]. We first show that the functions g1, g2 : 2[n] →
Z, defined as

∀X ∈ 2[n], g1(X) := rank(A[X, X]) and g2(X) := rank(A[X, X]),

are submodular functions. For each i ∈ [n], let Vi be the subspace of Fn
spanned by the ith

row vector of A and the characteristic vector χi for the set {i}. Let f : 2[n] → Z be the function

defined as

∀X ∈ 2[n], f (X) = dim

(
∑
e∈X

Ve

)
.

It is not hard to verify that the function f is a submodular function. Observe that a subset

of row vectors of A[X, X] indexed by T ⊆ X are linearly independent if and only if the set

{χe | e ∈ X} ⊔ {A[e′, [n]] | e′ ∈ T} are linearly independent. Therefore, for all X ∈ 2[n],

f (X) = g1(X) + |X|.

Since f is a submodular function, g1 is a submodular function. Similarly, we can show that g2
is also a submodular function.

20

Since g1 and g2 are submodular functions, their sum g = g1 + g2 is also a submodular

function. For any set T = {t1, t2} ⊔ {t3, t4} with four distinct elements from [n], let gT be a

function defined on subsets of T such that

∀X ⊆ T, gT(X) = g(X ∪ {t1, t2}).

For any X ⊆ T and a, b ∈ T,

gT(X ∪ {a}) + gT(X ∪ {b}) = g(X ∪ {a, t1, t2}) + g(X ∪ {b, t1, t2})
≥ g(X ∪ {t1, t2}) + g(X ∪ {a, b, t1, t2}) (submodularity of g)
= gT(X) + gT(X ∪ {a, b}).

From the above, gT is a submodular function. Note that if there exists a cut S in A with

{t1, t2} ⊆ S and {t3, t4} ⊆ S if and only if the minimum value of function gT is at most 2. One

can also observe that for any subset X ⊆ T, gT(X) can be computed in poly(n) time. Thus,

using the submodular minimization algorithm in [Sch03, Chapter 45], we can compute the

minimum the value of gT for any set T = {t1, t2} ⊔ {t3, t4} of four distinct elements from [n]
in poly(n) time. There are at most n4

such subsets T, and we can test whether A has a cut by

computing the minimum value of gT for all such possible subsets T. Thus, we can test whether

A has a cut in poly(n) time.

Now, we discuss how to find a minimal cut. For a subset T = {t1, t2} ⊔ {t3, t4} with four

distinct elements from [n], let g′T be the function on subsets of T such that

∀X ⊆ T, g′T(X) = (n + 1)gT(X) + |X|.

Since both gT and the cardinality function are submodular, g′T is also a submodular function.

Next observe that for X ⊆ T, the set X minimizes g′T if and only if for any S ⊆ [n] with t1, t2 ∈ S
but t3, t4 /∈ S the following holds:

1. g(X ∪ {t1, t2}) ≤ g(S).

2. if g(X ∪ {t1, t2}) = g(S), then |X ∪ {t1, t2}| ≤ |S|.

Therefore, a minimizing set of g′T gives a minimal cut that contains both t1 and t2 but not t3
and t4, if such a cut exists. Now, using [Sch03, Theorem 45.1], we can compute minimizing sets

for the submodular functions g′T for all possible subsets T, and thus, we get a minimal cut in

poly(n) time if A has a cut.

21

Algorithm 1 Algorithm to test equal corresponding principal minors of two irreducible matrices

Input: Two n× n irreducible matrices A and B over F

Output: If A PME

= B, then returns a sequence X of subsets of [n] such that A, B and X satisfy the

property P . Otherwise, returns “No”.

1: Using Claim 3.9, get D and A′ ← (A + D)adj
and B′ ← (B + D)adj

.

2: X ←Finding-Cut-Sequence(A′, B′, [n])
3: if X = “No” then

4: return “No”.

5: Let X = (X1, X2, . . . , Xk).
6: return (X1, X2, . . . , Xk).
7:

8: function Finding-Cut-Sequence(A, B, I)
9: if |I| ≤ 3, or, A has no cut then

10: if A is not diagonally equivalent to B or BT
then

11: return “No”.

12: else

13: return I if A DS

= B, otherwise return ∅.

14: else

15: B̃← B
16: Using Lemma 3.8, find a minimal cut S ⊆ I in A.

17: if |S| ≥ 3, and, S is not a cut of B then

18: return “No”.

19: else if |S| = 2, and, S is not a cut of B then

20: X ←Min-Cut-size-Two(A, B, S, I)
21: if X = “No” then

22: return “No”.

23: B̃← ct(B, X)

24: Let s ∈ S.

25: X ′ ←Finding-Cut-Sequence(A(S + s), B̃(S + s), S + s).
26: if X ′ = “No” then

27: return “No”.

28: Let X ′ = (X′1, X′2, . . . , X′k).
29: A0 ← A.

30: for i = 1 to k do

31: if s ∈ X′i then

32: Xi ← X′i ∪ S
33: else

34: Xi ← X′i
35: Ai ← ct(Ai−1, Xi).

36: if Ak
DS

= B̃ then

37: X ← (X1, X2, . . . , Xk)

38: else if ct(Ak, S) DS

= B̃ then

39: X ← (X1, X2, . . . , Xk, S)
40: else

41: return “No”.

42: if |S| = 2, and, S is not a cut of B then

43: X ← (X , X).

44: return X .

22

3.2 A description of the algorithm

Algorithm 2 Function for handling |S| = 2 case in function Cut-transpose of Algorithm 1

function Min-Cut-size-Two(A, B, I, S)

P← ∅, and Q← ∅
Let s ∈ S.

for t ∈ I \ S do

if A(S + t) DS

= B(S + t) then

P← P ∪ {t}.
else if A(S + t) DS

= B(S + t)T
then

Q← Q ∪ {t}.
else

return “No”.

X ← P ∪ {s}.
if X is not a cut of B then

return “No”.

else

return X.

3.3 Proof of Correctness of Algorithm 1

Claim 3.9. Let F be a field of size greater than 10n5
. Let A and B be two n× n irreducible matrices

over F. Then, in poly(n) time, we can find a diagonal matrix D ∈ Fn×n
such that A + D and B + D

are nonsingular and all entries of (A + D)adj
and (B + D)adj

are nonzero.

Remark 3.10. When the size of the underlying field F is not greater than 10n5
, we can construct

an extension K of F such that |K| > 10n5
and work with the larger field K. We can also

construct such an extension K in time poly(n).

Proof. Given A and B, we need to construct the following two types of diagonal matrices over

F in poly(n) time.

Type I: Find diagonal matrices DA and DB such that both A + DA and B + DB are nonsingular.

Type II: For all i, j ∈ [n], find diagonal matrices Ai,j and Bi,j such that

(A + Ai,j)
adj[i, j] ̸= 0 and (B + Bi,j)

adj[i, j] ̸= 0.

Before describing the construction of the above-mentioned diagonal matrices, we first dis-

cuss how to use them to get the diagonal matrix D as promised in the claim. Using univariate

polynomial interpolation, we combine all the above-mentioned diagonal matrices to a single

n× n diagonal matrix D̃ as follows. Let T be a subset of F of size 2n2 + 2. Fix a bĳection ϕ from

T to the set of diagonal matrices

{DA, DB} ⊔ {Ai, Bi | i ∈ [n} ⊔ {Ai,j Bi,j | i ̸= j ∈ [n]}.

For each i ∈ [n], let Pi be a univariate polynomial in y such that for each e ∈ T, Pi(e) = ϕ(e)[i, i].
We can find Pi in poly(n) time using Lagrange interpolation such that its degree is at most

2n2 + 1. Then, the diagonal matrix D̃ is defined as D̃[i, i] = Pi for all i ∈ [n]. Observe that

for each e ∈ T, after substituting y by e in D̃, we get ϕ(e). Thus, both A + D̃ and B + D̃ are

nonsingular, and all entries of (A + D̃)adj
and (B + D̃)adj

are nonzero. In other words, the

univariate polynomials det(A + D̃), det(B + D̃), (A + D̃)adj[i, j] and (B + D̃)adj[i, j] for each

i, j ∈ [n] are nonzero. Note that each of these polynomials has a degree at most (2n2 + 1)× n.

23

Now, we have found a matrix with univariate polynomials as its entries that satisfy the condition

of our claim.

Now consider the polynomial

P = det(A + D̃) · det(B + D̃) · ∏
i,j∈[n]

(A + D̃)adj[i, j] · (B + D)adj[i, j].

From [Csa76, Ber84], we know that the determinant of an n × n matrix whose entries are

univariate polynomials of at most poly(n) degree can be computed in poly(n) time. Thus, the

polynomial P can be computed in time poly(n). The degree of P is at most d = (2n3 + n)×
(2n2 + 2) ≤ 10n5

. Therefore, for any subset S ⊆ F of size d + 1, there exists an a ∈ S such that

P(a) is nonzero. Find such a point a in S. Given the polynomial P, this can be done in poly(n)
time. This implies that all the polynomials in the product are also nonzero at a ∈ S. Hence,

after substituting y by a in D̃, we get a matrix D that satisfies the condition of our claim. Next,

we describe how to find diagonal matrices of Type I and Type II in poly(n) time.

Find Type I diagonal matrices. Let y be an indeterminate and D′ be a diagonal matrix with

each diagonal entry is y. Then, the coefficient of yn
in det(A + D′) is one, hence, det(A + D′) is

nonzero. Compute the polynomial det(A + D′). Since it is an univariate polynomial of degree

n, in poly(n)time, we can find a point a ∈ F such that the evaluation of det(A + D′) at a is

nonzero. Then, the matrix DA we get by substituting y = a in D′. Similarly, we can find DB in

poly(n) time.

Finding Type II diagonal matrices. Let GA be the graph such that its vertex set in [n] and

(i, j) is an edge inf GA if and only if i ̸= j and A[i, j] ̸= 0. Let i, j ∈ [n]. Since A is irreducible,

there exists a path from i to j in GA. Let

P = (i0, i1, i2, . . . , ik) with i0 = i, ik = j,

be a shortest path from i to j. In particular, when i = j, P is (i0 = i). We can compute such a

path P in time poly(n). Let D′ be a n× n diagonal matrix and y be an indeterminate such that

for all e ∈ [n],

D′[e, e] =

{
0 if e ∈ P \ {i}
y otherwise.

Next, following the proof of [HL84, Theorem 1], one can show that

(A + D′)adj[i, j] = det
(
(A + D′) [[n]− j, [n]− i]

)
̸= 0.

From [Csa76, Ber84], we can compute (A + D′)adj[i, j] in time poly(n). It is a polynomial of

degree at most n − 1. Therefore, in poly(n) time, we can find a point a ∈ F such that the

evaluation of (A + D′)adj[i, j] at y = a is nonzero. Then, the diagonal matrix Ai,j we get by

substituting y = a in D′. Similarly, we find Bi,j for all i, j ∈ [n].

Lemma 3.11. Let A and B be two matrices over F such that their rows and columns are indexed by

elements in I. Let the off-diagonal entries of A and B be nonzero. Then, given (A, B, I) as input to the

function Finding-Cut-Sequence in Algorithm 1, it does the following:

1. If A PME

= B, then it returns a sequence X of less than 2|I| many subsets of I such that A, B and X
satisfy the property P .

2. Otherwise, it returns “No”.

Proof. We use induction to prove the above lemma.

24

Base case. The base case of our induction is either |I| ≤ 3, or A has no cut. From Lemma 2.9,

if |I| ≤ 3 or A has no cut, then A PME

= B if and only if either A DS

= B or A DS

= BT
. Therefore, for

the base case, the function Finding-Cut-Sequence in Algorithm 1 returns “No” when A ̸PME

= B.

Otherwise, it returns the sequence X = (I) when A DS

= B, and X = (∅) when A DS

= BT
.

Using Definition 2.11, X produces the matrix sequence (A, A) when X = (I), and produces

the matrix sequence (A, AT) when X = (∅). Hence, for the base case, A, B and X satisfies the

property P .

Inductive step. In Line 16, the function Finding-Cut-Sequence (in Algorithm 1) computes a

minimal cut S in the matrix A. If |S| ≥ 3 and A PME

= B, then from Lemma 3.6, S is also a cut in B.

This implies that if S is not a cut in B, then A ̸PME

= B. Therefore, when |S| ≥ 3 and S is not a cut

of B, the function Finding-Cut-Sequence returns “No”.

Now, consider the case when the size of the minimal cut S is two, but it is not a cut in B.

Then, Algorithm 1 calls the function Min-cut-size-Two of Algorithm 2. It returns “No” when

either a minor corresponding to set S + t where t ∈ I \ S is not same for A and B or when

X, defined in Line 11, is not a cut of B. If a minor is not the same, then obviously A ̸PME

= B.

Otherwise from Lemma 3.3, A ̸PME

= B when X is not a cut of B. If A PME

= B, then from Lemma 3.3

X is a cut of B such that S is a cut of ct(B, X).
Note that B̃ is initially assigned to B at Line 15 of Algorithm 1. If the function Min-cut-size-

Two in Algorithm 2 returns a cut X, the B̃ is reassigned to ct(B, X) at Line 23 of Algorithm 1.

Thus, at the end of Line 23 of Algorithm 1, we have two matrices A and B̃ such that S is a

common cut of them, and also S is a minimal cut in A.

Let s ∈ S, M = A(S + s), and N = B̃(S + s). Since the cardinality of S is at least two, the

size of S + s is less than |I|. Therefore, from the induction hypothesis, the function Finding-

Cut-Sequence on input (M, N, S + s) returns X ′ as follows:

1. If M PME

= N, thenX ′ = (X′1, X′2, . . . , X′k) such that k < 2|S + s|, X′i ⊆ S + s, andX ′ produces

a sequence of matrices (M = M0, M1, M2, . . . , Mk) satisfying the following:

∀i ∈ [k], Mi = ct(Mi−1, X′i) where X′i is ∅, S + s, or a cut in Mi−1, and Mk
DS

= N. (17)

2. Otherwise, X ′ =“No”.

If M ̸PME

= N, then A ̸PME

= B̃. Applying Lemma 2.14, A ̸PME

= B̃ implies that A ̸PME

= B. Therefore, when

X ′ =“No”, the function Finding-Cut-Sequence also returns “No”.

Now assume that M PME

= N, and X ′ = (X′1, X′2, . . . , X′k) satisfies Eq. (17). Let (X1, X2, . . . , Xk)
be the sequence of subsets of I defined by the ‘for loop’ in Line 41 of Algorithm 1. From

this sequence of subsets, the function Finding-Cut-Sequence defines a sequence of matrices

(A = A0, A1, A2, . . . , Ak) such that Ai = ct(Ai−1, Xi) for all i ∈ [k]. To be well defined, this

sequence of matrices should satisfy that Xi is a ∅, I or a cut in Ai−1. Next, we rely on the

following claim, whose proof we defer to the end of the proof of this lemma.

Claim 3.12. The sequence of matrices (A0 = A, A1, A2, . . . , Ak) produced by the sequence (X1, X2, . . . , Xk)
satisfies the following:

1. for all i ∈ [k], Xi is a ∅, I or a cut in Ai−1.

2. for all i ∈ [k], Mi = Ai(S + s) and S is a minimal cut in Ai.

Using the above claim and Eq. (17), Ak(S + s) DS

= B̃(S + s). Applying Claim 3.12, S is also a

minimal cut in Ak. Therefore, from Lemma 3.7, we have either Ak
DS

= B̃ or ct(Ak, S) DS

= B̃ when

Ak
PME

= B̃. This implies that if Ak ̸
DS

= B̃ and ct(Ak, S) ̸DS

= B̃, then Ak ̸
PME

= B̃, hence from Lemma 2.14,

Ak ̸
PME

= B. Therefore, the function Finding-Cut-Sequence returns “No” when Ak ̸
DS

= B̃ and

25

ct(Ak, S) ̸DS

= B̃. When Ak
DS

= B̃, the function Finding-Cut-Sequence definesX as (X1, X2, . . . , Xk),

and when ct(Ak, S) DS

= B̃, it defines X as (X1, X2, . . . , Xk, S). Therefore, at the end of Line 41

in Algorithm 1, we have a sequence X of subsets such that A, B̃ and X satisfy the property P .

Note that if S is a minimal cut in A of size 2 and it is not a cut in B, then B̃ is defined as

ct(B, X). This implies that B = ct(B̃, X). Therefore, in Line 43 of Algorithm 1, X is updated by

appending X at its end. Thus, we finally have a sequence X of subsets of I such that A, B, and

X satisfy the property P .

From the induction hypothesis, we know the length of the sequence X ′ is less than 2|S + s|,
which is at most 2(|I| − 1). Observe that at the inductive step, in comparison with X ′, the

length of final sequence X is increased by at most 2. Therefore, the length X is less than

2|I|.

Proof of Claim 3.12. We use induction to prove Claim 3.12.

Base case (i = 1). Note that X′1 is ∅, S + s or a cut in A0(S + s). If X′1 is ∅ or S + s, then the

definition of Xi ensures that it is also ∅ or S + s, respectively. Otherwise, when X′1is a cut in

A(S + s), Lemma 3.5 implies that X1 is also a cut in A0.

Since X′1 ⊆ X1, A1 = ct(A0, X1) and M1 = ct(M0, X′1), it is not hard to see that A1(S + s) =
M1. For the sake of contradiction assume that S is not a minimal cut in A1. Then, there exists a

cut S′ in A1 such that S′ ⊂ S but S′ ̸= S. From the definition of X1, S is a subset of either X1 or

X1. Therefore, S′ is also a subset of either X1 or X1. Then, using Theorem 3.1, S′ is also a cut in

A0. This is a contradiction, since S is a minimal cut in A0.

Inductive step (i > 1). From the induction hypothesis, S is a minimal cut in Ai−1 and

Ai−1(S + s) = Mi−1. We also have that X′i is ∅, S + s or a cut in Mi−1. Now, using analysis

similar to the base case, we can prove our inductive step.

Theorem 3.13. Let A and B be two irreducible n× n matrices over a field F. Then, given A and B as

input to Algorithm 1, it does the following:

1. If A PME

= B, it returns a sequenceX of less than 2n many subsets of [n] such that A, B andX satisfy

the property P .

2. Otherwise, it returns “No”.

Proof. The input matrices A and B are irreducible. Therefore, using Claim 3.9, we have an

n× n diagonal matrix D over F such that the matrices A + D and B + D are nonsingular and

all the entries of the matrices A′ = (A + D)adj
and B′ = (B + D)adj

are nonzero. Assume that

the rows and columns of A′ and B′ are indexed by [n]. From Lemma 3.11, given A′, B′ and

[n] as input to the function Finding-Cut-Sequence in Algorithm 1, it returns X satisfying the

following property:

1. If A′ ̸PME

= B′, then X =“No”.

2. Otherwise, X = (X1, X2, . . . , Xℓ) is a sequence of less than 2n many subsets of [n] such

that A′, B′ and X satisfy the property P . That is, X produces a sequences of matrices

(A′ = A′0, A′1, A′2, . . . , A′ℓ) such that

∀i ∈ [ℓ], A′i = ct(A′i−1, Xi) where Xi is ∅, [n], or a cut in A′i−1, and A′ℓ
DS

= B.

Since A + D and B + D are nonsingular, from Lemma 2.1, A PME

= B if and only if A′ PME

= B′.
Therefore, Algorithm 1 returns “No” when A ̸PME

= B. Next, consider the case when A′ PME

= B′,
which is equivalent to A PME

= B. Then X = (X1, X2, . . . , Xℓ). Using induction, we now show the

following claim.

26

Claim 3.14. The sequence of X = (X1, X2, . . . , Xℓ) of subsets of [n] produces a sequence of matrices

(A = A0, A1, A2, . . . , Aℓ) such that Ai = ct(Ai−1, Xi) and (Ai + D)adj DS

= A′i for all i ∈ [ℓ].

Base case (i = 1). From the definition, A′0 = (A0 + D)adj
. We know that X1 is ∅, [n], or

a cut of A′0. Using Lemma 2.7, if X1 is a cut in A′0, then X1 is also a cut of A0. Therefore,

A1 = ct(A0, X1) is well defined. Applying Lemma 2.15, we also have that (A1 + D)adj DS

= A′1.

Hence, the base case is proved.

Inductive step (i > 1). From the inductive hypothesis, we have that (Ai−1 + D)adj DS

= A′i−1.

The rest of the proof in the inductive step is similar to the base case

This completes the proof of Claim 3.14. Now, we have a sequence X = (X1, X2, . . . , Xℓ) of

less than 2n many subsets such that it produces a sequence of matrices (A = A0, A1, A2, . . . , Aℓ)
with the following property:

∀i ∈ [ℓ], Ai = ct(Ai−1, Xi) where Xi is ∅, [n], or a cut in Ai−1, and (Aℓ + D)adj DS

= A′ℓ.

Since A′ℓ
DS

= B′, using Lemma 2.10, Aℓ
DS

= B. Thus, A, B and X satisfy the property P when

A PME

= B. This completes the proof of our theorem.

3.4 Time complexity of Algorithm 1

Now, we analyze the time complexity of Algorithm 1. More specifically, we show that given

two n× n irreducible matrices over F as input, Algorithm 1 performs poly(n) F-operations.

To achieve this, we first discuss the complexity of the function Finding-Cut-Sequence in Algo-

rithm 1. In particular, we prove that given (A, B, I) as input, the function Finding-Cut-Sequence

performs poly(|I|) F-operations.

Time complexity of the function Finding-Cut-Sequence. Let T(m) be the number of F-

operations performed by the function Finding-Cut-Sequence when the size of the input matrices

A and B is m×m, i.e., |I| = m. We show that T(m) is at most poly(m). First, when |I| ≤ 3 or A
has no cute, the function checks whether A DS

= B or BT
. From the ??, this can be done in poly(m)

F-operations. Therefore, if the input matrix A has no cut,

T(m) ≤ poly(m).

Now, when A has a cut, the function first computes a minimal cut S in A. Lemma 3.8 ensures

that we can find S in poly(m) many F-operations. Then, if |S| ≥ 3, it checks whether S is also a

cut in B. Using the observation 2.6, this can be verified in poly(m) F-operations. If |S| ≥ 3 and

it is also not a cut in B, it returns “No”. Hence, in that case,

T(m) ≤ poly(m).

Next, consider the size of the minimal cut S is two. Then, the function Finding-Cut-Sequence

needs to check whether S is also a cut in B. Again, from the observation 2.6, this can be done in

poly(m)F-operations. If S is not a cut in B, the function calls another function Min-Cut-size-Two

in Algorithm 2 with the input (A, B, I, S).
The function Min-Cut-size-Two computes a partition P ⊔ Q of the set I \ S. To do this,

for all t ∈ I \ S, the function Min-Cut-size-Two needs to check whether A(S + t) DS

= B(S + t)
or B(S + t)T

. For some t ∈ I \ S, A(S + t) ̸DS

= B(S + t) and B(S + t)T
implies that A ̸PME

= B,

hence the function Min-Cut-size-Two returns “No”. Otherwise, it successfully computes the

partition P ⊔ Q of I \ S. Since the size of S + t is three, applying the Claim 2.8, verifying

27

whether A(S + t) DS

= B(S + t) or B(S + t)T
can be done in constant F-operations. Therefore,

computing the partition P ⊔ Q takes O(|I \ S|) many F-operations. Next, the function Min-

Cut-size-Two checks whether X = P ∪ {s} is cut of B or not, and from the observation 2.6,

this can be done in poly(m) F-operations. If X is also a cut in B, the function Min-Cut-size-

Two returns X, otherwise “No”. Overall, if the function Min-Cut-size-Two returns “No”, the

function Finding-Cut-Sequence also returns “No”. Thus, when the function Min-Cut-size-Two

returns “No”,

T(m) ≤ poly(m).

If X is a cut of B, then the function Finding-Cut-Sequence requires to compute the matrix

ct(B, X). From observation 2.13, the matrix ct(B, X) can be computed in poly(m) F-operations.

After Line 23 in Algorithm 1, we have two matrices A and B̃ which have a common cut

S. Then, the function Finding-Cut-Sequence makes a recursive call with the input (A(S +
s), B(S + s), S + s). Using induction, this recursive call performs T(m′) many F-operations

where m′ = |S + s|. If the return value X ′ of this recursive call is “No”, the function Finding-

Cut-Sequence also returns “No”. Thus, in that case,

T(m) = T(m′) + poly(m).

Now assume that the return value X ′ is not “No”. Then, X ′ = (X′1, X′2, . . . , X′k) is a

sequence of subsets of S + s. Next, the function Finding-Cut-Sequence extends it to a sequence

X = (X1, X2, . . . , Xk) of subsets of I. As explained in the proof of Lemma 3.11, X produces

a sequence of matrices (A = A0, A1, A2, . . . , Ak) such that Ai = ct(Ai−1, Xi) where i ∈ [k].
From observation 2.13, in Line 35 of Algorithm 1, computing Ai for each i ∈ [k] needs at most

poly(m) F-operations. Therefore, to compute the matrix Ak from A0 = A, the total number

of F-operations required is at most poly(m). Then, the function Finding-Cut-Sequence needs

to verify whether B̃ DS

= Ak or ct(Ak, S). From the ?? and observation 2.13, verifying whether

B̃ DS

= Ak or ct(Ak, S) needs at most poly(m) F-operations. If B̃ ̸DS

= Ak and ct(Ak, S), the function

Finding-Cut-Sequence returns “No”, otherwise it updates X appropriately and returns it.

These updates can be done efficiently.

Thus, from the above discussion, we can conclude that

T(m) ≤ T(m′) + poly(m), where m′ < m.

This implies that T(m) is at most poly(m).

Time complexity of Algorithm 1. Now, we discuss the time complexity of Algorithm 1. Given

two n× n irreducible matrices A and B over F, Algorithm 1 first computes a diagonal matrix

D such that both A + D and B + D are nonsingular and all the entries of A′ = (A + D)adj

and B′ = (B + D)adj
are nonzero. Claim 3.9 ensures that we can compute such a diagonal

matrix D in poly(n) F-operations. Then Algorithm 1 calls the function Find-Cut-Sequence with

input (A, B, [n]). From the above discussion, the function Find-Cut-Sequence performs at most

poly(n) many F-operations. Thus, Algorithm 1 performs at most poly(n) F-operations.

3.5 Proof of Theorem 1.1

Now, we discuss the proof of Theorem 1.1.

Proof of Theorem 1.1. First, assume that there exists a sequence X = (X1, X2, . . . , Xℓ) of subsets

of [n] such that it produces a sequence of matrices (A = A0, A1, A2, . . . , Aℓ) with the following

property:

∀i ∈ [n], Ai = ct(Ai−1, Xi) where Xi is ∅, [n], or a cut in Ai−1, and Aℓ
DS

= B.

28

If Xi = ∅ or [n] for some i ∈ [ℓ], then it is easy to see that Ai−1
PME

= Ai. From Lemma 2.14, if Xi

is a cut of Ai−1 for some i ∈ [ℓ], then Ai−1
PME

= Ai. Thus, A PME

= B when A, B and X satisfy P . The

converse direction follows from Theorem 3.13. From the discussion in Section 3.4, we know

that in poly(n) F-operations, a sequence X such that A, B and X satisfy the property P can be

computed when A PME

= B.

4 Proof of Theorem 1.2: Testing Principal Minor Equivalence

4.1 A description of the algorithm

Algorithm 3 Algorithm to test equal corresponding principal minors of two matrices

Input: Two n× n matrices A and B over F whose rows and columns are indexed by [n]
Output: Output “Yes” if A PME

= B, otherwise output “No”

1: Compute the directed graph GA with the vertex set [n] and (i, j) is an edge of GA if and

only if i ̸= j and A[i, j] ̸= 0.

2: Compute the directed graph GB with the vertex set [n] and (i, j) is an edge of GB if and only

if i ̸= j and B[i, j] ̸= 0.

3: Compute the strongly connected components of GA and GB.

4: Let I1, I2, . . . Is be the strongly connected components of GA.

5: Let I′1, I′2, . . . I′s′ be the strongly connected components of GB.

6: if {I1, I2, . . . , Is} ̸= {I′1, I′2, . . . , I′s} then

7: Output “No”.

8: else

9: for i = 1 to s do

10: ans← output of Algorithm 1 with input matrices A(Ii) and B(Ii).
11: if ans = “No” then

12: Output “No”, and stop execution.

13: Ouput “Yes”.

4.2 Analysis of Algorithm 3

Proof of Theorem 1.2. We start with a proof of correctness of Algorithm 3.

Correctness of Algorithm 3. The rows and the columns of the input matrices A and B are

indexed by [n]. In Algorithm 3, we have two directed graphs GA and GB. From the observa-

tion 2.3, after permuting the rows and the corresponding columns, the matrix A can be written

as a block upper triangular matrix such that the diagonal blocks are A(I1), A(I2), . . . , A(Is)
and each A(Ii) is a irreducible matrix. Similarly, after permuting the rows and the corre-

sponding columns, B can be written as written as block upper triangular matrix such that

the diagonal blocks are B(I′1), B(I′2), . . . , B(I′s′) and each B(I′i) is an irreducible matrix. Then,

from Lemma 2.4, if {I1, I2, . . . , Is} ̸= {I′1, I′2, . . . , I′s′}, then A ̸PME

= B. Therefore, Algorithm 3

returns “No” when {I1, I2, . . . , Is} ̸= {I′1, I′2, . . . , I′s′}.
Now consider when {I1, I2, . . . , Is} = {I′1, I′2, . . . , I′s′}. Then, s = s′. Again using Lemma 2.4,

A PME

= B if and only A(Ii)
PME

= B(Ii) for all i ∈ [s]. From Theorem 3.13, given two irreducible

matrices as input to Algorithm 1, it returns “No” if and only if the corresponding principal

minors of the input matrices are not equal. Thus, Algorithm 3 outputs “No” if A ̸PME

= B, otherwise

outputs “Yes”.

29

Time complexity of Algorithm 3. From the definition, given the matrices A and B, the

directed graphs GA and GB can be computed in time poly(n). Given the directed graphs

GA and GB, we can compute its strongly connected component in time poly(n). From the time

complexity analysis of Algorithm 1 (Section 3.4), we know each invocation of Algorithm 1 needs

at most poly(n) time. Thus, the total time complexity of Algorithm 1 is at most poly(n).

5 PIT for Sum of two DET1

In this section, we show Theorem 1.3. Given two sequences of n× n matrices (A0, A1, . . . , Am)
and (B0, B1, . . . , Bm) over a field F such that the rank of Ai and Bi is at most 1 for 1 ≤ i ≤ n,

the goal is to decide whether two polynomials P1 = det(A0 + A1y1 + . . . + Amym) and P2 =
det(B0 + B1y1 + . . . + Bmym) are the same in poly(m, n) F-operations. First, we consider the

case when A0 and B0 are the zero matrix. Then, we reduce the general case where there are

no constraints on A0 and B0 to this case. Then, we give a polynomial time reduction from this

problem to the problem of equivalence testing of principal minors of two m×m matrices. For

integers p and q, let 0p and 0p,q denote the p× p and p× q matrix, respectively, with all zeros.

5.1 A0 = B0 = 0n.

Let Aj = u1,j · vT
1,j and Bj = u2,j · vT

2,j for each j ∈ [m] where u1,j, v1,j, u2,j, v2,j ∈ Fn
. Let Ui, Vi

be n× m matrices such that their jth column are ui,j and vi,j, respectively, for i ∈ {1, 2} and

j ∈ [m]. Let Y be an m× m diagonal matrix with indeterminate yi as the ith diagonal entry.

Then,

det(A1y1 + . . . + Amym) = det(U1YVT
1) and det(B1y1 + . . . + Bmym) = det(U2YVT

2).

For a subset T of [m], let yT = ∏e∈T ye, Ui,T = U[[n], T] and Vi,T = V[[n], T] for i ∈ {1, 2}. Using

the Cauchy-Binet formula for multiplying two rectangular matrices,

det(UiYVT
i) = ∑

T⊆[m],|T|=n
(det(Ui,T)det(Vi,T)yT) for i ∈ {1, 2}.

Hence, by comparing coefficients of monomials of P1 and P2, we get

P1 = P2 ⇐⇒ det(U1,T)det(V1,T) = det(U2,T)det(V2,T) ∀T ⊆ [m] with |T| = n. (18)

Now, we discuss how to test the latter part mentioned above. First, we find a set T of size [n]
such that det(U1,T)det(V1,T) is non-zero using a matroid intersection algorithm for matroids

represented by U1 and V1 in poly(m, n) F-operations. If such T doesn’t exist, then P1 = 0. Simi-

larly, we can check whether P2 is zero and decide whether P1 = P2. Suppose such a set T exists

and without loss of generality, let T = [n]. If det(U1,[n])det(V1,[n]) ̸= det(U2,[n])det(V2,[n]), then

P1 ̸= P2 from Eq. (18).

Suppose det(U1,[n])det(V1,[n]) = det(U2,[n])det(V2,[n]). Now, we have to check this for other

sets T of size n. Let U′i = U−1
i,[n] ·Ui and V ′i = V−1

i,[n] · Vi for i = 1, 2. Since Ui = Ui,[n] ·U′i , Vi =

Vi,[n] ·V ′i for i = 1, 2 and det(U1,[n])det(V1,[n]) = det(U2,[n])det(V2,[n]), for any set T of size n,

det(U1,T)det(V1,T) = det(U2,T)det(V2,T) ⇐⇒ det(U′1,T)det(V ′1,T) = det(U′2,T)det(V ′2,T)
(19)

Note that U′i,[n] = V ′i,[n] = In. For i = 1, 2, let Ûi and V̂i be the n× (m− n) matrices defined

as Ûi[[n], [m] \ [n]] and V̂i[[n], [m] \ [n]], respectively. For i ∈ {1, 2} and a set T = T′1 ⊔ T′2 of size

n with T′1 ⊆ [n], T′2 ⊆ [m]− [n] such that T′2 = {n + e | e ∈ T2} where T2 ⊆ [m− n],

det(U′i,T) = σ(T)det(U′i [[n] \ T′1, T′2]) and det(V ′i,T) = σ(T)det(V ′i [[n] \ T′1, T′2]) (20)

30

where σ : ([m]
n) −→ {1,−1} is some sign function on n sized subsets of [m]. Since U′i [[n] \T′1, T′2] =

Û1[T1, T2] and V ′i [[n] \ T′1, T′2] = V̂1[T1, T2] where T1 = [n] \ T′1, using Eqs. (18) to (20) we get

P1 = P2 ⇐⇒ det(Û1[T1, T2])det(V̂1[T1, T2]) = det(Û2[T1, T2])det(V̂2[T1, T2]) (21)

for each T1 ⊆ [n], T2 ⊆ [m− n] with |T1| = |T2|

Let A and B be the m×m matrices defined as follows:

A =

 0m−n V̂T
1

−Û1 0n

 and B =

 0m−n V̂T
2

−Û2 0n

 .

Let us consider the principal minors of A and B. If a set T is a subset of [m− n] or [m]− [m− n],
then the corresponding principal minors of both A and B are zero. Consider a set T = T′1 ⊔ T2
such that T2 ⊆ [m − n] and T′1 ⊆ [m] − [m − n] such that T′1 = {m − n + e|e ∈ T1} where

T1 ⊆ [n]. Then,

A[T] =

 0|T2| V̂1[T1, T2]T

−Û1[T1, T2] 0|T1|

 and B[T] =

 0|T2| V̂2[T1, T2]T

−Û2[T1, T2] 0|T1|

 .

Note that if |T1| ̸= |T2|, then both det(A[T]) and det(B[T]) are zero. If |T1| = |T2|, then

det(A[T]) = det(Û1[T1, T2])det(V̂1[T1, T2]); det(B[T]) = det(Û2[T1, T2])det(V̂2[T1, T2]). (22)

From above discussion and Eq. (22),

A PME

= B ⇐⇒ det(Û1[T1, T2])det(V̂1[T1, T2]) = det(Û2[T1, T2])det(V̂2[T1, T2]) (23)

∀T1 ⊆ [n], T2 ⊆ [m− n] with |T1| = |T2|.

From Eq. 21 and Eq. 23, P1 = P2 ⇐⇒ A PME

= B. Note that A and B can be computed

using poly(m, n) F-operations. From Theorem 1.1, we can check whether A PME

= B in poly(m)
F-operations. This completes the proof of Theorem 1.3 when A0 and B0 are the zero matrix.

5.2 No constraint on A0 and B0

From previous section, P1 = det(A0 + U1YVT
1) and P2 = det(B0 + U2YV2)T

. From [?, Lemma

4.3] P1 = det(C1) and P2 = det(C2) such that

C1 =

 Im Y 0m,n
0m Im VT

1
U1 0n,m A0

 and C2 =

 Im Y 0m,n
0m Im VT

2
U2 0n,m A0

 .

If we compute Pi = det(Ci) using the Generalized Laplace Theorem by fixing the first m rows,

we get that Pi is multilinear and the coefficient of yT for a subset T of [m] is

σ(T)det(Ci[[2m + n] \ [m], ϕ(T)])

where σ is some sign function depending on set T and ϕ : 2[m] −→ ([2m+n]
m+n) such that ϕ(T) =

T ∪ {e + m | e /∈ T} ∪ ([2m + n] \ [2m]). Hence,

P1 = P2 ⇐⇒ det(C1[[m], ϕ(T)]) = det(C2[[m], ϕ(T)]) ∀T ⊆ [m]. (24)

31

Let V be the following (m+ n)× (2m+ n)matrix

(
Im Im 0m,n

0n,m 0n,m In

)
. For any set T′ ⊂ [2m+ n]

of size m + n which is not in image of ϕ, det(V[[m + n], T′]) = 0 and if T′ belongs to image of

map ϕ, then det(V[[m + n], T′]) = 1. Hence,

det(C1[[m], ϕ(T)]) = det(C2[[m], ϕ(T)]) ∀T ⊆ [m] ⇐⇒

det(C1[[m], T′])det(VT′) = det(C2[[m], T′])det(VT′) ∀T′ ∈
(
[2m + n]

m + n

)
. (25)

Note that the right-hand side of the above equation is similar to Eq. (18). Hence, using similar

arguments from the previous section, checking the later part of Eq. 25 can be reduced to

checking whether principal minors of two (2m + n)× (2m + n) matrices (that can be computed

in poly(n) time) are the same. Hence, from Eq. (24), checking whether P1 = P2 reduces to

checking whether principal minors of two (2m + n)× (2m + n) matrices are the same. This

completes the proof of Theorem 1.3.

References

[Ahm23] Abeer Al Ahmadieh. The fiber of the principal minor map, 2023.

[Arn24] Poinas Arnaud. On determinantal point processes with nonsymmetric kernels,

2024.

[BC16] Abderrahim Boussaïri and Brahim Chergui. A transformation that preserves prin-

cipal minors of skew-symmetric matrices. Electronic Journal of Linear Algebra, 32, 06

2016.

[BCCL21] A. Boussaïri, A. Chaïchaâ, B. Chergui, and S. Lakhlifi. Generalized tourna-

ment matrices with the same principal minors. Linear and Multilinear Algebra,

70(20):5433–5444, April 2021.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using a

small number of processors. Inf. Process. Lett., 18(3):147–150, 1984.

[BILT04] Abderrahim Boussaïri, Pierre Ille, Gérard Lopez, and Stéphan Thomassé. The

c3-structure of the tournaments. Discrete Mathematics, 277(1):29–43, 2004.

[Bru18] Victor-Emmanuel Brunel. Learning signed determinantal point processes through

the principal minor assignment problem. In Proceedings of the 32nd International

Conference on Neural Information Processing Systems, NIPS’18, page 7376–7385, Red

Hook, NY, USA, 2018. Curran Associates Inc.

[BS11] R.B. Bapat and Sivaramakrishnan Sivasubramanian. Identities for minors of the

laplacian, resistance and distance matrices. Linear Algebra and its Applications,

435(6):1479–1489, 2011.

[BU24] Victor-Emmanuel Brunel and John Urschel. Recovering a magnitude-symmetric

matrix from its principal minors, 2024.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-

sity press, 2004.

[Csa76] L. Csanky. Fast parallel matrix inversion algorithms. SIAM J. Comput., 5(4):618–623,

1976.

32

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic

program testing. Information Processing Letters, 7(4):193 – 195, 1978.

[Edm67] Jack Edmonds. Systems of distinct representatives and linear algebra. Journal of

research of the National Bureau of Standards, 71B(4):241–245, 1967.

[ES80] Gernot M. Engel and Hans Schneider. Matrices diagonally similar to a symmet-

ric matrix. Linear Algebra and its Applications, 29:131–138, 1980. Special Volume

Dedicated to Alson S. Householder.

[Fri77] Shmuel Friedland. Inverse eigenvalue problems. Linear Algebra and its Applications,

17(1):15–51, 1977.

[Gal67] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum

Hungarica, 18:25–66, 1967.

[GBDK19] Mike Gartrell, Victor-Emmanuel Brunel, Elvis Dohmatob, and Syrine Krichene.

Learning nonsymmetric determinantal point processes. In Advances in Neural Infor-

mation Processing Systems, volume 32. Curran Associates, Inc., 2019.

[Gee99] James F. Geelen. Maximum rank matrix completion. Linear Algebra and its Applica-

tions, 288:211–217, February 1999.

[GKST16] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic

identity testing for sum of read-once oblivious arithmetic branching programs.

Computational Complexity, 26(4):835–880, August 2016.

[GT06] Kent Griffin and Michael J. Tsatsomeros. Principal minors, part ii: The principal

minor assignment problem. Linear Algebra and its Applications, 419(1):125–171, 2006.

[GT17] Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-nc. In

Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,

Canada, June 19-23, 2017, pages 821–830. ACM, 2017.

[HGDK22] Insu Han, Mike Gartrell, Elvis Dohmatob, and Amin Karbasi. Scalable mcmc sam-

pling for nonsymmetric determinantal point processes. In International Conference

on Machine Learning, 2022.

[HL84] D.J. Hartfiel and R. Leowy. On matrices having equal corresponding principal

minors. Linear Algebra and its Applications, 58:147–167, 1984.

[IKS10] Gábor Ivanyos, Marek Karpinski, and Nitin Saxena. Deterministic polynomial

time algorithms for matrix completion problems. SIAM Journal on Computing,

39(8):3736–3751, January 2010.

[KNS20] Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once obliv-

ious algebraic branching programs (roabps) and multilinear depth-three circuits.

ACM Transactions on Computation Theory, 12(1):1–27, February 2020.

[KT12] Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning.

Found. Trends Mach. Learn., 5:123–286, 2012.

[Kul12] John A Kulesza. Learning with determinantal point processes. Phd thesis, University

of Pennsylvania, 2012.

[Loe86] Raphael Loewy. Principal minors and diagonal similarity of matrices. Linear Algebra

and its Applications, 78:23–64, 1986.

33

[Lov89] László Lovász. Singular spaces of matrices and their application in combinatorics.

Boletim da Sociedade Brasileira de Matemática, 20(1):87–99, October 1989.

[M8̈5] Rolf H. Möhring. Algorithmic Aspects of Comparability Graphs and Interval Graphs,

page 41–101. Springer Netherlands, 1985.

[Mac75] Odile Macchi. The coincidence approach to stochastic point processes. Advances in

Applied Probability, 7(1):83–122, 1975.

[Mur72] Katta G. Murty. On the number of solutions to the complementarity problem and

spanning properties of complementary cones. Linear Algebra and its Applications,

5(1):65–108, 1972.

[Mur93] Kazuo Murota. Mixed Matrices: Irreducibility and Decomposition, page 39–71.

Springer New York, 1993.

[NSV92] Hariharan Narayanan, Huzur Saran, and Vĳay V. Vazirani. Randomized parallel

algorithms for matroid union and intersection, with applications to arboresences

and edge-disjoint spanning trees. SIAM J. Comput., 23:387–397, 1992.

[RKT15] Justin Rising, Alex Kulesza, and Ben Taskar. An efficient algorithm for the sym-

metric principal minor assignment problem. Linear Algebra and its Applications,

473:126–144, 2015. Special issue on Statistics.

[RRS
+

22] Aravind Reddy, Ryan A. Rossi, Zhao Song, Anup Rao, Tung Mai, Nedim Lipka,

Gang Wu, Eunyee Koh, and Nesreen Ahmed. One-pass algorithms for MAP in-

ference of nonsymmetric determinantal point processes. In Kamalika Chaudhuri,

Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors,

Proceedings of the 39th International Conference on Machine Learning, volume 162 of

Proceedings of Machine Learning Research, pages 18463–18482. PMLR, 17–23 Jul 2022.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial

identities. Journal of the ACM, 27(4):701–717, October 1980.

[Sch03] Alexander Schrĳver. Combinatorial optimization : polyhedra and efficiency. Vol. B. ,

Matroids, trees, stable sets. chapters 39-69. Algorithms and combinatorics. Springer-

Verlag, Berlin, Heidelberg, New York, N.Y., et al., 2003.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results

and open questions. Found. Trends Theor. Comput. Sci., 5(3-4):207–388, 2010.

[UBMR17] John Urschel, Victor-Emmanuel Brunel, Ankur Moitra, and Philippe Rigollet.

Learning determinantal point processes with moments and cycles. In Proceed-

ings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,

page 3511–3520. JMLR.org, 2017.

[Val79] Leslie G. Valiant. Completeness classes in algebra. Proceedings of the eleventh annual

ACM symposium on Theory of computing, 1979.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings

of the International Symposium on Symbolic and Algebraic Computation (EUROSAM),

pages 216–226. Springer-Verlag, 1979.

34

A Missing Proofs from Section 2

Lemma 2.14 (restated). Let A be an n× n matrix over a field F. Let X ⊆ [n] be a cut in A. Then,

A PME

= ct(A, X).

Proof. Since X is a cut in A, the matrix A can be written as follows:

A =

X X()X M p · qT

X u · vT N
,

where p, v ∈ F|X| and q, u ∈ F|X|. Then, from Definition 2.11,

ct(A, X) =

X X()X M p · uT

X q · vT NT
.

Let S ⊆ [n]. Observe that if S is a subset of X or X, then det(A(S)) = det(ct(A, X)(S)). Now

consider that S = S1 ⊔ S2 such that S1 and S2 are nonempty subsets of X and X, respectively.

Next, we prove that det(A(S)) = det(ct(A, X)(S)).
Assume that the coordinates p, v are indexed by X and the coordinates of q, u are indexed by

X. By pS1 , qS2 , uS1 and vS2 , we denote the projection of the respective vectors on the respective

coordinates. Let A′ = A(S) and B′ = ct(A, X)(S). Then,

A′ =

 M(S1) pS1 · qT
S2

uS2 · vT
S1

N(S2)

 , and B′ =

 M(S1) pS1 · uT
S2

qS2 · vT
S1

N(S2)T

 .

If either of pS1 , qS2 , uS2 , or vS1 is the zero vector, then

det(A′) = det(B′) = det(M(S1))det(N(S2)).

Next, assume that all of them are nonzero.

Let ℓ = |S|, k = |S1|, and K = [k]. Suppose that the rows and columns of A′ and B′ are

indexed by [ℓ], and the rows and columns of M(S1) are indexed by K. For each i ∈ K, let Mi
denote the k× k matrix obtained by removing ith column of M(S1) and appending pS1 as the

kth column. For j ∈ K, let Nj denote the (l − k) × (l − k) matrix obtained by removing jth
column of N(S2) and adding uS2 as the first column. Using the Generalized Laplace Theorem

(see [Ahm23, Theorem 3.1]), det(A′) can be written as follows.

det(A′) = ∑
T⊆[ℓ], |T|=k

(−1)∑ K+∑ T det(A′[K, T])det(A′[K, T]).

Note that for all T ⊂ [ℓ] with |T ∩ K| ≥ 2, the submatrix A′[K, T]) is not full rank since K is

a cut for the matrix A′. Therefore, for all such T ⊆ [ℓ] with |T| = k, det(A′[K, T]) = 0. This

implies that

det(A′) = det(M(S1))det(N(S2)) + ∑
i∈K,j∈K

(−1)j−i det(A′[K, K− i + j])det(A′[K, K + i− j]).

Observe that for all i ∈ K and j ∈ K,

det(A′[K, K− i + j]) = qS2 [j− k]det(Mi), and det(A[K, K + i− j]) = vS1 [i]det(Nj).

35

Therefore,

det(A′) = det(M(S1))det(N(S2)) + ∑
i∈K,j∈K

(−1)j−ivS1 [i]qS2 [j− k]det(Mi)det(Nj)

= det(M(S1))det(N(S2)) +

(
∑
i∈K

(−1)ivS1 [i]det(Mi)

)∑
j∈K

(−1)jqS2 [j− k]det(Nj)

 .

Similarly, using the Generalized Laplace Theorem (see [Ahm23, Theorem 3.1]), we compute B′.
For each j ∈ K, let Ñj denote the matrix obtained by removing jth row of N(S2) and adding qS2

as the first row. Then,

det(B′) = det(M(S1))det(N(S2)) +

(
∑
i∈K

(−1)ivS1 [i]det(Mi)

)∑
j∈K

(−1)juS2 [j− k]det(Ñj)

 .

Let P be the following (|S2|+ 1)× (|S2|+ 1) matrix

P =

(
0 qT

S2

uS2 N(S2)

)
.

Then,

(−1)k det(P) = ∑
j∈K

(−1)jqS2 [j− k]det(Nj) = ∑
j∈K

(−1)juS2 [j− k]det(Ñj).

The above equalities follow from the expression for computing the determinant of P by the first

row and the first column of P, respectively. Hence, det(A(S)) = det(ct(A, X)(S)).

Notations. Suppose that A is an n × n matrix over a field F. Let X ⊆ [n] such that

rank(A[X, X]) ≤ 1 and rank(A[X, X]) ≤ 1. Then, the matrix A has the following structure:

A =

X X()X M p · qT

X u · vT N
,

where p, v ∈ F|X| and q, v ∈ F|X|. Without loss of generality, assume that X = [ℓ]. Then,

X = [n] \ [ℓ]. For each i ∈ X, let

1. MC
i denote the ℓ× ℓ matrix obtained by removing ith column of M and appending p as

the ℓth column.

2. MR
i denote the ℓ× ℓ matrix obtained by removing ith row of M and appending vT

as the

ℓth row.

For each j ∈ X, let X j denote the set X− j. Let pA ∈ F|X| and qA ∈ F|X| defined as follows: for

all i ∈ X and j ∈ X,

pA[i] = (−1)ℓ+i+1 det(MC
i) and qA[j− ℓ] = ∑

k∈X

(−1)k+jq[k− ℓ] · det(N[X j, Xk]). (26)

Similarly, let vA ∈ F|X| and uA ∈ F|X| defined as follows: for all i ∈ X and j ∈ X,

vA[i] = (−1)ℓ+i+1 det(MR
i) and uA[j− ℓ] = ∑

k∈X

(−1)k+ju[k− ℓ] · det(N[Xk, X j]). (27)

Based on the above notations, we have the following claim.

36

Claim A.1. Considering the notations defined above,

Aadj[X, X] = pA · qT
A and Aadj[X, X] = uA · vT

A,

where pA, qA, uA and vA are defined as Eq. (26) and Eq. (27).

Proof. The proof of the above claim will closely follow the proof of [Ahm23, Lemma 4.5]. For

all i ∈ [n], let (n)i denote the set [n] \ {i}. Then, for all i ∈ X and j ∈ X,

Aadj[i, j] = (−1)i+j · det
(

A[(n)j, (n)i]
)

.

Using the Generalized Laplace Theorem (see [Ahm23, Theorem 3.1]), for all i ∈ X and j ∈ X,

det
(

A[(n)j, (n)i]
)
= (−1)ℓ−i+1 · ∑

T⊆[n]i , |T|=ℓ

(−1)∑ X+∑ T det(A[X, T]) · det(A[X j, T]).

Since the rank of A[X, X] is at most one, for all ℓ-size subsets T of [n]i with |T ∩ X| ≥ 2, the

value of det(A[X, T]) is zero. Thus, from the above equation,

det
(

A[(n)j, (n)i]
)
= (−1)ℓ−i+1 · ∑

k∈X

(−1)k−i det(MC
i) · q[k− ℓ] · det(A[X j, Xk])

= (−1)ℓ+1 det(MC
i) · ∑

k∈X

(−1)kq[k− ℓ] · det(A[X j, Xk])

This implies that, for all i ∈ X and j ∈ X,

Aadj[i, j] = (−1)ℓ+i+1 det(MC
i) · ∑

k∈X

(−1)k+jq[k− ℓ] · det(A[X j, Xk])

= pA[i] · qA[j− ℓ].

Similarly, we can show that for all i ∈ X and j ∈ X,

Aadj[j, i] = uA[j− ℓ] · vA[i].

This completes the proof of the above claim.

Lemma 2.7 (restated). Let A be an n× n matrix over a field F. Let D be an n× n diagonal matrix

over F such that A + D is non-singular. Then, A and (A + D)adj
have the same set of cuts.

Proof. Observe that A and A + D have the same set of cuts. Next, we show that A + D and

(A + D)adj
have the same set of cuts, implying that A and (A + D)adj

have the same set of

cuts. From Claim A.1, any cut in A + D is also a cut in (A + D)adj
. For the converse direction,

assume that X is a cut in (A + D)adj
. Therefore, X is also a cut in (A + D)−1

since A + D is

non-singular and

(A + D)−1 =
1

det(A + D)
(A + D)adj.

Note that

A + D = det(A + D) · ((A + D)−1)adj.

Thus, again using Claim A.1, X is also a cut in A + D.

Lemma 2.15 (restated). Let A be an n × n matrix over a field F. Then, for any X ⊆ [n] with

rank(A[X, X]) ≤ 1 and rank(A[X, X]) ≤ 1,

ct(A, X)adj = ct(Aadj, X).

37

Proof. Without loss of generality, assume that X = [ℓ]. Then, X = [n] \ [ℓ]. Note that A can be

written as follows.

A =

X X()X M p · qT

X u · vT N
,

where p, v ∈ F|X| and q, u ∈ F|X|. From Definition 2.11,

Ã = ct(A, X) =

X X()X M p · uT

X q · vT NT
.

Repeating some notations from the above, for each i ∈ X, let

1. MC
i denote the ℓ× ℓ matrix obtained by removing ith column of M and appending p as

the ℓth column.

2. MR
i denote the ℓ× ℓ matrix obtained by removing ith row of M and appending vT

as the

ℓth row.

For each j ∈ X, let X j denote the set X− j. Then, using Claim A.1,

Aadj =

X X X Aadj(X) pA · qT
A

X uA · vT
A Aadj(X)

,

where pA ∈ F|X| and qA ∈ F|X| are defined as Eq. (26) and vA ∈ F|X| and uA ∈ F|X| are defined

as Eq. (27). Then,

ct(Aadj, X) =

X X X Aadj(X) pA · uT
A

X qA · vT
A Aadj(X)T

.

On the other hand, again applying Claim A.1,

Ãadj =

X X X Ãadj(X) p̃ · ũT

X q̃ · ṽT Ãadj(X)

,

where like Eq. (26) and Eq. (27), p̃, ṽ ∈ F|X| and q̃, ũ ∈ F|X| are defined as follows: For i ∈ X
and j ∈ X,

p̃[i] = (−1)ℓ+i+1 det(MC
i) and ũ[j− ℓ] = ∑

k∈X

(−1)k+ju[k− ℓ] · det(NT[X j, Xk])

ṽ[i] = (−1)ℓ+i+1 det(MR
i) and q̃[j− ℓ] = ∑

k∈X

(−1)k+jq[k− ℓ] · det(NT[Xk, X j]).

Now we show that ct(Aadj, X) = Ãadj
. For all i ∈ [n], let (n)i denote the set [n] \ {i}. Next, we

divide our proof into three cases.

38

1. Assume that i, j ∈ X. Then,

ct(Aadj, X)[i, j] = Aadj[i, j] = det(A[(n)j, (n)i]).

On the other hand,

Ãadj[i, j] = det(Ã[(n)j, (n)i]) = det(ct(A[(n)j, (n)i], X)).

Therefore, applying Lemma 2.14, ct(Aadj, X)[i, j] = Ãadj[i, j] for all i, j ∈ X.

2. Assume that i, j ∈ X. Then,

ct(Aadj, X)[i, j] = Aadj[j, i] = det(A[(n)i, (n)j]).

On the other hand,

Ãadj[i, j] = det(Ã[(n)j, (n)i]) = det(ct(A[(n)i, (n)j], X)).

Therefore, again applying Lemma 2.14, ct(Aadj, X)[i, j] = Ãadj[i, j] for all i, j ∈ X.

3. Assume that i ∈ X and j ∈ X. Then,

ct(Aadj, X) = pA[i] · uA[j− ℓ]

= (−1)ℓ+i+1 det(MC
i) · ∑

k∈X

(−1)k+ju[k− ℓ] · det(N[Xk, X j])

= (−1)ℓ+i+1 det(MC
i) · ∑

k∈X

(−1)k+ju[k− ℓ] · det(NT[X j, Xk])

= p̃[i] · ũ[j] = Ãadj[i, j].

Similarly, we can show that ct(Aadj, X)[j, i] = Ãadj[j, i].

This completes the proof of our lemma.

B Others

For an n× n matrix A, let GA be the graph defined ??. For a directed cycle C of GA, let the weight of the

cycle denoted by wA(C) be ∏(i,j)∈C A[i, j].

Lemma B.1. Let A and B be two n× n matrices. Then A PME

= B if and only if for each subset S ⊆ [n] ,

the sum of weights of directed Hamiltonian cycles is the same for subgraphs GA[S] and GB[S].

Proof. We show this by induction on the size of subsets. The base case, when the size of the

subset is one, is trivial. Suppose the statement is true for subsets of size k. Let S be a subset of

size k + 1 and det(A(∅)) = det(B(∅)) = 1 and CA and CB denote the set of Hamiltonian cycles

of GA[S] and GB[S], respectively. Then,

det(A(S)) = ∑
T ̸=∅,T⊆S

±(det(A(S \ T))∏
i∈T

A(i))± ∑
C∈CA

wA(C). (28)

det(B(S)) = ∑
T ̸=∅,T⊆S

±(det(B(S \ T))∏
i∈T

B(i))± ∑
C′∈CB

wB(C′). (29)

The backward direction follows directly from Eqs. (28) and (29) as all the principal minors of A
and B are the same, and the signs of corresponding summands are the same in Eqs. (28) and (29).

39

Now, we show the forward direction. For any non-empty subset T, if we consider the sub-

matrices A(S \ T) and B(S \ T), for each subset T′ ⊆ S \ T the sum of the weights of the directed

Hamiltonian cycles in GA[T′] and GB[T′] are same. Hence, det(A(S \ T)) = det(B(S \ T)) by

induction hypothesis. Also, the signs are the same in Eq. (28) and Eq. (29) as it just depends on

the size of the subsets T. This, along with the fact that the sum of weights of the Hamiltonian

cycle in GA[S] and GB[S] are the same, implies det(A(S)) = det(B(S)).

Following is an immediate corollary of the above lemma.

Corollary B.2. Let A and B be two n× n matrices such that A PME

= B. Let D be an n× n diagonal

matrix. Then, A + D PME

= B + D.

Proof. Since A PME

= B, (A + D)[i] = (B + D)[i] for each i ∈ [n]. This implies the sum of weights of

the Hamiltonian cycle in GA[i] and GB[i] are the same. Since A PME

= B, from Lemma B.1, for each

subset S ⊆ [n] , the sum of weights of directed Hamiltonian cycles is the same for subgraphs

GA[S] and GB[S]. Note that GA and GA+D have the same set of cycles, and any cycle of length

greater than one has the same weight in GA and GA+D. Similarly, GB and GB+D have the same

set of cycles, and any cycle of length greater than one has the same weight in GB and GB+D.

This implies that for each subset S ⊆ [n] , the sum of weights of directed Hamiltonian cycles is

the same for subgraphs GA+D[S] and GB+D[S]. Hence, from Lemma B.1, A + D PME

= B + D.

Claim B.3. Let A be a 4× 4 matrix with all off-diagonal entries as non-zero. Let B be another 4× 4
matrix such that A PME

= B. Then, one of the following holds:

1. A DS

= B or A DS

= BT

2. A and B has a common cut and for any common cut X of A and B, ct(A, X)
DS

= B or ct(A, X)
DS

= BT

Proof. When A does not have any cut, then from Lemma 2.9 A DS

= B or A DS

= BT
. Suppose A

has a cut. Then, B must have some cut; otherwise, since A PME

= B, Lemma 2.9 would imply

that A has no cut, which is a contradiction. First, we show that B must have a cut that is

common to A using contradiction. Suppose this is not true. Without loss of generality, assume

that A has cut {1, 2} and B has cut {1, 3}. Since A PME

= B, A′ = D1AD−1
1

PME

= D2BD−1
2 = B′ for

any non-singular diagonal matrices D1 and D2. Since off-diagonal entries are non-zero, we

can choose D1 such that A′[1, 3] = A′[1, 4] = A′[2, 3] = 1. Since A and A′ has same cuts,

rank(A′[{1, 2}, {3, 4}]) = 1 and hence A′[2, 4] = 1. If the above claim is true for A′ and B then

it is also true for A and B. Hence, without loss of generality, we can assume that each entry of

A[{1, 2}, {3, 4}] is one. Similarly, we can assume that each entry of B[{1, 3}, {2, 4}] is one. Let

A be the following matrix with non-zero off-diagonal entries.

A =

∗ a 1 1
b ∗ 1 1
c dc ∗ e
f d f g ∗

Since A PME

= B, we can represent B as follows by making its size two principal minors the same

as of A.

B =

∗ 1 h 1
ab ∗ dc i
c
h 1 ∗ 1
f d f

i eg ∗

40

Since rank(B[{2, 4}, {1, 3}]) = 1, abeg = dc f . After substituting g with
dc f
abe ,

A =

∗ a 1 1
b ∗ 1 1
c dc ∗ e
f d f dc f

abe ∗

 and B =

∗ 1 h 1
ab ∗ dc i
c
h 1 ∗ 1
f d f

i
dc f
ab ∗

 .

Since A PME

= B, from Lemma B.1, we get the following equations by equating the sum of weights

of Hamiltonian cycles in GA[S] and GB[S] such that |S| = 3.

ac + bdc =
dc2

h
+ abh =⇒

(
a− dc

h

)
(c− bh) = 0 [S = {1, 2, 3}] (30)

a f + bd f = i f +
abd f

i
=⇒ f (a− i)

(
1− bd

i

)
= 0 [S = {1, 2, 4}] (31)

e f +
dc2 f
abe

= h f +
dc2 f
abh

=⇒ f (e− h)
(

1− dc2

abeh

)
= 0 [S = {1, 3, 4}] (32)

ed f +
d2c2 f
abe

=
d2c f

i
+

dci f
ab

=⇒ f d
(

e− cd
i

)(
1− ci

abe

)
= 0 [S = {2, 3, 4}]. (33)

Since the off-diagonal entries are non-zero, in each equation, at least one of the last two factors

must be zero. This gives 16 different possibilities because there are four equations. Now, we

show that each of these possibilities would imply a contradiction.

Note that

(
a− dc

h

)
= 0 and (e − h) = 0 together implies ae = dc which in turn implies

{1, 3} is a cut of A which is a contradiction. Hence,

(
a− dc

h

)
and e− h can’t be zero together.

Similarly,

(
a− dc

h

)
and a− i can’t be zero together as it implies cd = hi. This implies {1, 2}

is a cut of B, which contradicts the condition of no common cut. Hence, if

(
a− dc

h

)
= 0 then(

1− bd
i

)
and

(
1− dc2

abeh

)
must be zero to make Eqs. (31) and (32) zero.

(
a− dc

h

)
= 0 and(

1− bd
i

)
= 0 imply abh = ci which in turn implies {1, 4} is a cut of B. Similarly,

(
a− dc

h

)
= 0

and

(
1− dc2

abeh

)
= 0 imply c = be. This implies {1, 4} is also a cut of A, which contradicts the no

common cut condition. Note that

(
a− dc

h

)
= 0 always led to a contradiction. Hence, it must

be that (c− bh) = 0 so that Eq. (30) is satisfied.

Now, we show that (c− bh) = 0 would also always lead to a contradiction. If

(
1− bd

i

)
is

also zero, then cd = hi which implies {1, 2} is a cut of B which is a contradiction. Similarly, if(
1− dc2

abeh

)
= 0 then cd = ae which implies {1, 3} is a cut of A which contradicts the no common

cut condition. Hence, to satisfy Eqs. (31) and (32), it must be that (e− h) and (a− i) is equal to

zero along with (c− bh). However, then {1, 4} becomes a cut of both A and B. Hence, (c− bh)
also can’t be zero. This contradicts Eq. (30). Hence, if A has a cut and A PME

= B, then A and B
must have a common cut.

Without loss of generality, let that common cut be {1, 2}. Using earlier arguments, we can

represent A and B as follows by making all entries of A[{1, 2}, {3, 4}] and B[{1, 2}, {3, 4}] one

and equating size two principal minors.

A =

∗ a 1 1
b ∗ 1 1
c dc ∗ e
f d f g ∗

 and B =

∗ h 1 1
ab
h ∗ 1 1
c dc ∗ i
f d f ge

i ∗

 .

41

Since A PME

= B, from Lemma B.1, we get the following equations by equating the sum of weights

of Hamiltonian cycles in GA[S] and GB[S] for S = {1, 2, 3} and S = {1, 3, 4}.

ac + bdc = hc +
abdc

h
=⇒ c(a− h)

(
1− bd

h

)
= 0 [S = {1, 2, 3}] (34)

e f + cg = i f +
cge

i
=⇒ (e− i)

(
f − cg

i

)
= 0 [S = {1, 3, 4}] (35)

Eqs. (34) and (35) together implies the following four possible cases. (a− h) = 0 and (e− i) = 0
implies A = B. Hence, A DS

= B.

If

(
1− bd

h

)
= 0 and

(
f − cg

i

)
= 0, then

B =

∗ bd 1 1
a
d ∗ 1 1
c dc ∗ cg

f

f d f f e
c ∗

 =

1 0 0 0
0 1

d 0 0
0 0 c 0
0 0 0 f

∗ b c f
a ∗ dc d f
1 1 ∗ g
1 1 e ∗

1 0 0 0
0 d 0 0
0 0 1

c 0
0 0 0 1

f

 = DATD−1.

Hence, in this case, we get A DS

= BT
.

If (a− h) = 0 and

(
f − cg

i

)
= 0, then

B =

∗ a 1 1
b ∗ 1 1
c dc ∗ cg

f

f d f f e
c ∗

 =

1 0 0 0
0 1 0 0
0 0 c 0
0 0 0 f

∗ a c f
b ∗ c f
1 d ∗ g
1 d e ∗

1 0 0 0
0 1 0 0
0 0 1

c 0
0 0 0 1

f

 .

Here, the matrix in the middle on the right hand side is ct(A, {1, 2}). Hence, in this case,

B DS

= ct(A, S).
Finally, the last case where

(
1− bd

h

)
and e− i are zero. Then,

BT =

∗ a

d c f
bd ∗ dc d f
1 1 ∗ g
1 1 e ∗

 =

1 0 0 0
0 d 0 0
0 0 1 0
0 0 0 1

∗ a c f
b ∗ c f
1 d ∗ g
1 d e ∗

1 0 0 0
0 1

d 0 0
0 0 1 0
0 0 0 1

 .

Like the previous case, the matrix in the middle is ct(A, {1, 2}). Hence, in this case, ct(A, S) DS

=
BT

. This completes the proof of Claim B.3.

42

	Introduction
	Applications
	Proof overview

	Notation and Preliminaries
	Principal minor equivalence
	Reducible and Irreducible matrix
	Cut of a matrix
	Diagonal similarity
	Cut-transpose operation

	Proof of thm:main-one: Characterizing and Testing of Prinicipal Minor Equivalence for Irreducible Matrices
	Some useful results on cut and cut-transpose operation
	A description of the algorithm
	Proof of Correctness of algo:thm-main-one
	Time complexity of algo:thm-main-one
	Proof of thm:main-one

	Proof of thm:main-two: Testing Principal Minor Equivalence
	A description of the algorithm
	Analysis of algo:thm-main-two

	PIT for Sum of two DET1
	A0=B0=0
	A0nq0

	Missing Proofs from sec:prelim
	Others

